
INF107
Exam

2023–2024

Instructions

• Duration: 90 minutes

• No documents are allowed

• Calculators, mobile phones, and computers are prohibited

• You can answer in French or English

• You will find the signature of some useful C functions at the end of the exam sheet

• There are 3 independent parts:

– Part 1: Questions 1 and 2 on Combinatorial logics, Questions 3 and 4 on RISC-V processor
– Part 2: Questions 6 to 9 on the C programming language
– Part 3: Question 10 on Processes, Question 11 on Synchronization and Question 12 on Scheduling

Part 1 (6 points / 25 minutes)
Combinatorial Logics
In the lecture, a basic combinatorial circuit has been introduced, called the decoder. In general, a decoder has
n inputs (named x0 to xn−1) and 2n outputs (named y0 to y2n−1). Only one of its outputs is 1 and all the
others are 0, where the index of the output being 1 corresponds to the value of the inputs, when interpreted
as an unsigned number (with x0 the least significant bit). Here is the truth table and the circuit symbol for a
2-input decoder:

x1 x0 y0 y1 y2 y3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Decoder
x0

x1

y3

y2

y1

y0

Question 1 (1 point)
Give the Boolean equations for the four outputs y0 to y3 of the decoder.

Question 2 (1 point)
We can realise any n-input Boolean function using only an n-input decoder and one or several OR gates.
Consider the 2-input Boolean function XNOR, i.e. Boolean equality. Its output is 1 if and only if the inputs
are equal. Give the truth table of the XNOR function (with inputs x0 and x1 and output z) and a circuit
implementation using a 2-input decoder and an OR gate.

RISC-V Processor
During the lecture and the lab exercises, we have studied a simple implementation of a RISC-V processor.
Figure 1 shows the data path implementing parts of the RISC-V base instruction set, including register-to-
register instructions, immediate instructions, loads, and stores.

We also recall the phases of the execution of an instruction: fetch, decode, execute, write-back, and next
instruction. In our implentation, all of the above phases are executed within a single clock cycle.

1



ImemP
C

+

4

D
e
c
o
d
e

Register
File

1

ALUsrc

0
imm

rs1

rs2

rd

write

op

D
M

e
m

write

WData

Addr

RData
store

1

0

load

write

write data

rd idx 1

rd idx 2

wr idx

rd data 1

rd data 2

A
L
U

+

Figure 1: Data path of the RISC-V processor

Question 3 (2 points)
Consider the execution of a load word instruction corresponding to the assembler code lw x2, 4(x1). For each
phase of its execution, describe briefly what happens in the processor implementation, which circuit elements
are involved, and what their input values are.

Question 4 (1 point)
The above implementation follows the Harvard architecture, i.e. we consider two separate memories for instruc-
tions and for data. As you have learned, code and data are usually stored in one shared memory. In the
following, we will consider that the two memory interfaces Imem and Dmem are connected to a single global
memory with the following properties:

• Read access is combinatorial, i.e. the read data is available in the same clock cycle

• Write access is synchronous, i.e. takes place at the next rising edge of the clock

• There can be only a single access (read or write) in one clock cycle

Explain why the proposed implementation no longer works with such a shared memory. Which are the
instructions that cannot be executed? Give an example of an instruction and the specific phases that cause the
problem.

Question 5 (1 point)
How can we change our implementation of the RISC-V base instruction set, in order to adapt it to a single
shared memory? Explain briefly the changes that need to be made, without giving a concrete circuit diagram.

Part 2 (6 points / 25 minutes)
During the TP of INF107, you have stored structures representing stars inside an array and inside a linked list.
In this part, you will implement functions to manipulate a vector, which is a data structure combining the
advantages of lists and arrays:

• all the elements are stored contiguous in memory
• still, the data structure can also grow dynamically when you insert new elements.

The advantage of a vector is that accessing an element is fast. Since all the element are contiguous and we know
the address of the first element, it easy to compute the address of the element to access. The disadvantage is
that adding an element to a full vector may take some time as it is necessary to allocate new memory and copy
the existing data to this new memory space.

The vector you will implement should store elements of type star_t, given below:

2



typedef struct {
/* Member fields omitted for brevity */

} star_t;

Question 6 (1 point)
Provide the definition of the structure vector that represents a vector and should contain the following fields:

• base:
A pointer to a memory space that can store one or several elements of type star_t

• size:
A number (>= 0) that stores the number of elements (not their sizes!) currently stored inside the
vector

• capacity:
A number (>= 0) that stores the number of elements (not their sizes!) that can be stored in the
currently allocated memory space

Choose the most appropriate type for each structure member and define a type alias vector_t to be used
instead of struct vector.

Question 7 (1 point)
Implement the function init_vector with the following signature:

void init_vector(vector_t *vec)

This function receives the address of a vector (vec) and initializes it to an empty vector. This empty vector
should have no memory allocated yet to store elements. Make sure to assign a meaningful value to all members
of the structure.

Question 8 (1.5 points)
Implement the function get_element with the following signature:

star_t *get_element(vector_t *vec, unsigned int element_idx)

This function should return the address of the element stored inside the vector vec, at the position indicated
by element_idx. If no such element exists, NULL should be returned.

Question 9 (2.5 points)
Implement the function ensure_capacity with the following signature:

void ensure_capacity(vector_t *vec, unsigned int new_capacity)

This function should make sure that the memory space allocated for the vector elements is sufficiently large
to hold at least new_capacity elements. If the current capacity is sufficiently large the vector should not be
modified. Otherwise, you should reallocate the memory space with the new larger capacity.

If the memory reallocation fails, you should report an error message using perror and terminate the program
with an appropriate exit code.

The content of the vector, i.e., its elements, and its size should not be modified.

Part 3 (8 points / 40 minutes)
Question 10 (3 points)
We want to implement a basic shell, similar to what we did in the lab session on processes and threads. As a
reminder, we describe its simplified behavior.

The shell reads the command after the prompt $. We assume the command line takes no arguments after
the command. For instance, we accept "ls" but neither "ls -l" nor "ls &". For each command the shell
always creates a new process and executes the command in it. Remember that the command may not exist or
be visible. The shell then waits for the command completion (or the completion of the new process).

Complete the code below and implement the behaviour described above (do not recopy the full source code
on your paper, just write the pieces of code to be added after TODO 1 to 4).

3



/* #include-s omitted for brevity */
int main() {

char cmd_line[64];
while (1) {

printf("$ ");
fflush(stdout);

/* Read the command line.
* We assume it is short and contains no argument (single word)
*/

if (read(0, cmd_line , 64) <= 1)
continue;

int rv;

/* TODO 1 */

switch (rv) {
case 0: /* Provide code to handle such a situation */

/* TODO 2 */

case -1: /* Provide code to handle such a situation */

/* TODO 3 */

default: /* Provide code to handle such a situation */

/* TODO 4 */
}

}
}

Question 11 (3 points)
(Synchronization problem.) A file is shared among several people. It can be either edited (i.e., written to) or
read from. If one person (a writer) is editing the file, no one else should be reading from or writing to it at the
same time. If one person (a reader) is reading the file, then others might read it at the same time.

Using semaphores and/or mutex locks as synchronization tools, complete the pseudo-code below to model a
correct solution for this problem (do not answer on the examn subject).

Multiple readers and writers will arrive continuously, each one of them executing the incomplete functions
below. You can assume for simplicity that there is no uninterrupted flow of readers, that is, eventually a writer
will always have its chance to write the file.

Note: the annex contains a list of functions usually available on semaphores and mutexes.

initialization() {
// write here initialization code (e.g., semaphores/mutex initialization ,
// but also global variables) shared by all participating processes

// TODO
}

reader(file) {

// TODO

read(file);

// TODO
}

4



writer(file) {

// TODO

write(file, "... something ...");

// TODO
}

Question 12 (2 points)
Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process Burst duration Priority
P1 5 4 (lowest)
P2 3 1 (highest)
P3 1 2
P4 8 2
P5 4 3

Arrival order is P1, P2, P3, P4, P5, all at time 0. Consider the scheduling algorithms: FCFS, nonpreemptive
priority scheduling, and round robin (RR) with q = 4ms. What are the waiting times of each process in each
case? (Reminder: the waiting time of a process is the amount of time spent waiting in the ready queue.) Recopy
and fill the following table with your answers:

Waiting times (ms)
Algorithm P1 P2 P3 P4 P5

FCFS

Priority

RR, q=4

Annex: signatures of useful C functions
• void *memset(void *ptr, int value, size_t num);

Fills the first num bytes of the memory area pointed to by ptr, returns ptr.
• int memcmp(const void *ptr1, const void *ptr2, size_t num);

Compares num bytes of the memory areas prt1 and ptr2; returns 0 when all the bytes are the same.
• void *memcpy(void *dst, const void *src, size_t num);

Copies num bytes from memory area src to memory area dst; returns dst.

• char *strncpy(char *dst, const char *src, size_t sz);
Copies up to sz characters from the string src to dst, stopping at the null character; returns dst.

• size_t strlen(const char *s);
Calculates the length of the string pointed to by s.

• void *malloc(size_t size);
Allocates size bytes on the heap and returns a pointer to the allocated memory.

• void *realloc(void *ptr, size_t size);
Changes the size of the memory block pointed to by ptr to size bytes. If ptr is NULL behaves like malloc.
May invalidate the pointer ptr and, in all cases, returns a pointer to the reallocated memory region. The
content of the memory area originally pointed to by ptr is preserved.

• void free(void *ptr);
Frees the memory space pointed to by ptr, which has to be allocated by malloc or realloc beforehand.

• void perror(const char *s);
Produces a message on stderr describing the last error encountered during a call to a C library function.

• void exit(int status);
Causes normal process termination with an exit code status.

5



• ssize_t read(int fildes, void *buf, size_t nbyte);
Attempt to read nbyte bytes from the file associated with the file descriptor fildes into the buffer pointed
to by buf; returns the number of bytes actually read, 0 when the end-of-file (EOF) was reached, or −1 in
case of an error.

• ssize_t write(int fildes, const void *buf, size_t nbyte);
Attempt to write nbyte bytes from the buffer pointed to by buf to the file associated with the file descriptor
fildes; returns the number of bytes actually written or -1 in case of an error.

• int pipe(int fildes[2]);
Create a pipe and place two file descriptors into fildes[0] and fildes[1]; return 0 on success or -1 on
error.

• pid_t fork(void);
Create a new process by copying the current process; returns 0 in the child process; returns the process
id of the child process or -1 in case of an error in the parent process.

• pid_t wait(int *status);
Blocks the current process until one of its child processes terminates; returns the process id of the child
or -1 in case of an error. Also returns the exit status of the child via the pointer status. If status is
NULL no exit code is returned.

• int execvp(const char *file, char *const argv[]);
Replace the current process image with a new process image loaded from the executable file with name
file, passing the table argv as command-line arguments to the new process image; returns -1 in case of
an error.

Annex: (pseudo-code) signatures of synchronization tool functions

/* functions available on a semaphore sem */
init_sem(semaphore sem, unsigned int n);
wait(semaphore sem);
signal(semaphore sem);

/* functions available on a mutex mtx */
init_mtx(mutex mtx); // initially unlocked
lock(mutex mtx);
release(mutex mtx);

6


