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The Producer-Consumer Concurrency Scenario

Classic paradigm for cooperating processes:
• Producer process produces information that is consumed by a consumer process
• Intermediate buffer used to pass produced stuff from producer to consumer

Two variations:
• Unbounded-buffer places no practical limit on the size of the buffer:

– Producer never waits
– Consumer waits if there is nothing to consume

• Bounded-buffer assumes that there is a fixed buffer size
– Producer must wait if buffer is full
– Consumer waits if there is nothing to consume
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Bounder-Buffer — Shared-Memory Implementation

Let’s provide an implementation of bounded-buffer producer-consumer
Using shared-memory IPC between producer and consumer

• E.g., two threads in the same process

Shared data:
1 #define BUFFER_SIZE 10

2 typedef struct {

3 /* ... */

4 } item;

5
6 item buffer[BUFFER_SIZE]; /* circular buffer of items */

7 int in = 0; /* location for next produced item */

8 int out = 0; /* location for next consumed item */

9 int counter = 0; /* number of available items */
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Bounder-Buffer — Shared-Memory Implementation (cont.)

Producer code:
1 while (true) {

2 next_produced = /* produce an item */

3 while (counter == BUFFER_SIZE) ; /* buffer is full, wait */

4 buffer[in] = next_produced;

5 in = (in + 1) % BUFFER_SIZE;

6 counter++;

7 }

Consumer code:
1 while (true) { /* consume an item */

2 while (counter == 0) ; /* buffer is empty, wait */

3 next_consumed = buffer[out];

4 out = (out + 1) % BUFFER_SIZE;

5 counter--;

6 /* consume the item in next_consumed */

7 }

Q: is this implementation correct?
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Bounder-Buffer — Shared-Memory Implementation (cont.)

Producer code:
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Race Condition — Example

1. counter++ could be implemented in hardware as:
• register1 = counter

• register1 = register1 + 1

• counter = register1

2. counter-- as:
• register2 = counter

• register2 = register2 - 1

• counter = register2

Consider the following execution interleaving of instructions (1) and (2) with “count = 5” initially:
• S0: producer execute register1 = counter {register1 = 5}

• S1: producer execute register1 = register1 + 1 {register1 = 6}

• S2: consumer execute register2 = counter {register2 = 5}

• S3: consumer execute register2 = register2 – 1 {register2 = 4}

• S4: producer execute counter = register1 {counter = 6}

• S5: consumer execute counter = register2 {counter = 4}
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Race Condition — Definition

Processes can execute concurrently
May be interrupted at any time, partially completing execution
Concurrent access to shared data may result in data inconsistency. More formally:

Definition (Race Condition)

A race condition is a situation where several processes access and manipulate the same data
concurrently and the outcome of the execution depends on the particular order in which the access
takes place.

Corollary: the correctness of a program affected by race conditions depend on the execution order
of its concurrent parts.

• Order which is, in general, unpredictable :-(

Maintaining data consistency requires mechanisms to ensure the orderly execution of
cooperating processes

We will study some of these mechanisms in this lecture.
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The Critical Section Problem

Consider system with 𝑛 processes {𝑃0, 𝑃1, … , 𝑃𝑛−1}
Each process has a critical section (CS) segment of
code

• Process may be changing common variables, updating
table, writing file, etc.

• Desired property: when one process in its critical
section, no other process may be in its own

The critical section problem is to design a protocol that
enforces this property
Each process must ask permission to enter critical
section in entry section, may follow critical section with
exit section, then remainder section
If we can solve this, we can avoid all race conditions

• Iff we box all concurrent accesses to shared data into
critical sections!

Figure: general structure of process 𝑃𝑖
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The Critical Section Problem (cont.)

Requirements for acceptable solutions to the critical section problem:

1. Mutual Exclusion: If process 𝑃𝑖 is executing in its critical section, then no other processes can be
executing in their critical sections

2. Progress: If no process is executing in its critical section and there exist some processes that
wish to enter their critical section, then the selection of the process that will enter next is taken only
by processes not executing in their remainder section and cannot be postponed indefinitely

3. Bounded Waiting: A bound must exist on the number of times that other processes are allowed to
enter their critical sections after a process has made a request to enter its critical section and
before that request is granted

Assumptions:

Each process executes at a nonzero speed
No assumption concerning relative speed of the processes
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Software Solutions
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Software Solutions

A software solution to the critical section problem is one that requires no special support from the
operating system or the hardware to work.

Software Solution 1:

Two-process solution: 𝑃0, 𝑃1.
• Notation: we will refer to 𝑃𝑖 as the other process w.r.t. 𝑃𝑗 and vice-versa

Assumption: load and store machine instructions are atomic; i.e., they cannot be interrupted
The two processes share one variable: int turn;

The variable turn indicates whose turn it is to enter the critical section next
Initially, turn = i (for some 𝑖, doesn’t matter which)
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Software Solution 1 (cont.)

Algorithm for process 𝑃𝑖:
1 while (true) {

2 while (turn == j) ;

3
4 /* critical section */

5
6 turn = j;

7
8 /* remainder section */

9 }

Q: is this correct?

Mutual exclusion is preserved
• 𝑃𝑖 enters critical section only if:

– turn = i, and
– and turn cannot be both 0 and 1 at the same time

But. What about the Progress requirement?
What about the Bounded-waiting requirement?
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Software Solution 1 (cont.)
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Peterson’s Solution

Two-process solution: 𝑃0, 𝑃1.
Assumption: load and store machine instructions are atomic; i.e., they cannot be interrupted
The two processes share two variables:

• int turn;

• boolean flag[2];

The variable turn indicates whose turn it is to enter the critical section next
The flag array is used to indicate if a process is ready to enter the critical section.

• flag[i] = true → process Pi is ready to enter
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Peterson’s Solution (cont.)

Algorithm for process 𝑃𝑖:
1 while (true) {

2 flag[i] = true;

3 turn = j;

4 while (flag[j] && turn == j) ;

5
6 /* critical section */

7
8 flag[i] = false;

9
10 /* remainder section */

11 }

Intuition:

A process can “book” its CS access using flag and can only enter when booked and it is its turn.
Before entering, a process sets the turn to the other process, so if the other process have been
waiting it will always get a change to enter before one that has just left the CS.
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Correctness of Peterson’s Solution

It is provable (cf. OS Book, Chapter 6) that the three CS requirement are met:

1. Mutual exclusion is preserved
• 𝑃𝑖 enters CS only if: either flag[j] = false or turn = i

2. Progress requirement is satisfied
3. Bounded-waiting requirement is met
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Peterson’s Solution vs Modern Hardware

Problem: Peterson’s Solution is not guaranteed to work on modern hardware architectures.
To improve performance, processors and compilers may reorder instructions that have no
dependencies.

Example

Two threads share the data: boolean flag = false; int x = 0;

Thread 1: while (!flag) ; print x;

Thread 2: x = 100; flag = true;

What is the expected output? 100

However, since flag and x are independent of each other, thread 2 instructions can be reordered
to become: flag = true; x = 100; (!)
If this occurs, the output may be 0 (!!)
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Peterson’s Solution vs Modern Hardware (cont.)

The effect of instruction reordering on Peterson’s Solution can be disastrous:1

This allows both processes to be in their critical section at the same time!

To ensure that Peterson’s solution works correctly on modern hardware we must use memory
barrier instructions (e.g., "x = 100; memory_barrier(); flag = true;")

• A memory barrier is an instruction that forces any change in memory to be propagated (“flushed”,
made visible) to all other processors

• When a memory barrier is performed, the system ensures that all loads/stores are completed before
any subsequent load/store operations are performed (even in presence of reordering)

1Reminder of Peterson’s for 𝑃1: flag[1] = true; turn = 0; while(flag[0] && turn == 0);
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Atomic Instructions
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Hardware Support for Synchronization

Modern hardware provides support for synchronization
• With it, we can do better than with pure-software solutions to the critical section problem

Special hardware instructions that allow to either test-and-modify the content of a memory word,
or to swap the contents of two words atomically (= cannot be interrupted during execution)

• Test-and-Set instruction
• Compare-and-Swap instruction
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The test_and_set Instruction

Behavior equivalent to:
1 boolean test_and_set(boolean *target) {

2 boolean rv = *target;

3 *target = true;

4 return rv;

5 }

Properties:
• Executed atomically
• Return the original value referenced by target
• Set the new value of target reference to true
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Solution Using test_and_set

Shared boolean variable lock, initialized to false

Solution:
1 do {

2 while (test_and_set(&lock)) ;

3
4 /* critical section */

5
6 lock = false;

7
8 /* remainder section */

9 } while (true);

Does this solve the critical section problem?

Not completely.
• It implements (1) mutual exclusion, and (2) progress, but not (3) bounded waiting.
• One fast process can make an unlucky slow process wait indefinitely and never enter its own CS.
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The compare_and_swap Instruction

Definition:
1 int compare_and_swap(int *value, int expected, int new_value) {

2 int temp = *value;

3 if (*value == expected) {

4 *value = new_value;

5 }

6 return temp;

7 }

Properties:
• Executed atomically
• Return the original value referenced by value
• Set the new value of target reference to new_value only if previous value was expected

– That is, the swap only takes place conditionally
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Solution Using compare_and_swap

Shared integer lock, initialized to 0
Solution:

1 while (true) {

2 while (compare_and_swap(&lock, 0, 1) != 0) ;

3
4 /* critical section */

5
6 lock = 0;

7
8 /* remainder section */

9 }

Does this solve the critical section problem?

Not completely.
As before it provides mutual exclusion without satisfying bounded waiting.
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Full Solution Using compare_and_swap

1 while (true) {

2 waiting[i] = true;

3 key = 1;

4 while (waiting[i] && key == 1)

5 key = compare_and_swap(&lock, 0, 1);

6 waiting[i] = false;

7
8 /* critical section */

9
10 j = (i + 1) % n;

11 while ((j != i) && !waiting[j])

12 j = (j + 1) % n;

13 if (j == i)

14 lock = 0;

15 else

16 waiting[j] = false;

17
18 /* remainder section */

19 }
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compare_and_swap on Modern CPUs

On Intel x86 architectures, the assembly language statement cmpxchg is used to implement
compare_and_swap.
The lock prefix is used to lock the bus while the destination operand is being updated.
The general form of this instruction hence appears as:

lock cmpxchg <destination operand>, <source operand>
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Atomic Variables

Typically, instructions such as compare_and_swap are used as building blocks for other
synchronization tools.
One tool is an atomic variable that provides atomic (uninterruptible) updates on basic data types
such as integers and booleans.
For example:

• Let sequence be an atomic variable of type integer
• Let increment() be an operation available on the atomic variable sequence

• The command: increment(&sequence); ensures sequence is incremented without interruption
increment() can be implemented on top of compare_and_swap like this:

1 void increment(atomic_int *v) {

2 int temp;

3 do {

4 temp = *v;

5 } while (temp != (compare_and_swap(v, temp, temp + 1));

6 }

Modern programming languages and compilers (e.g., C++20, Rust) provide atomic variables.
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Mutex Locks
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Mutex Locks

Previous solutions are complicated and generally inaccessible to high-level applications
programmers
OS designers build easier-to-use software tools to solve the CS problem
Simplest is mutex lock (“mutex” for “MUTual EXclusion”)

• Boolean variable indicating if lock is available or not
Protect a critical section by:

• First acquire() a lock
• Then release() the lock

Using a mutex lock (application point of view):
while (true) {

acquire();

/* critical section */

release();

/* remainder section */

}
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Mutex Locks (cont.)

Implementation of acquire() and release() (OS point of view):

acquire() {

while (!available) ; /* busy wait */

available = false;

}

release() {

available = true;

}

The OS must guarantee that acquire() and release() are executed atomically
• Can do so using hardware support like compare_and_swap

Problem: busy wait, upon acquire() we constantly check if the lock has become available
• Waste of resources: CPU, battery
• Also called spinlock as the CPU keeps “spinning” waiting for the lock
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Semaphores
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Semaphores

Synchronization tool—introduced by Edsger Dijkstra in 1962—that provides more sophisticated
(e.g., than mutex locks) ways for processes to synchronize their activities.
A semaphore 𝑆 is an integer variable
Can only be accessed via two atomic operations

• wait(S) — originally and often still called P(S) from Dutch proberen, “to test”
• signal(S) — or V(S) from verhogen, “to increment”

Definitions:
wait(S) {

while (S <= 0)

; // busy wait

S--;

}

signal(S) {

S++;

}

Two variants:
• Binary semaphore: integer value can range only between 0 and 1

– Intuition: analogous to a mutex lock
• Counting semaphore: integer value can range over an unrestricted domain

– Intuition: count the number of resources available from a finite pool
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Semaphore Usage

With semaphores we can solve various synchronization problems
Example (1): solution to the CS problem

• Semaphore called mutex initialized to 1 (intuitive meaning: CS available)
• Each process:

wait(mutex);

/* critical section */

signal(mutex);

/* remainder section */

Example (2): two processes 𝑃1 and 𝑃2 want to ensure that action 𝐴1 by 𝑃1 happens before
action 𝐴2 by 𝑃2

• Semaphore sync initialized to 0 (intuitive meaning: “𝐴1 has not happened yet”)
• Processes:

P1() {

A1;

signal(sync);

}

P2() {

wait(sync);

A2;

}

32/46 2023 INF107 Operating Systems — Synchronization



Semaphore Usage

With semaphores we can solve various synchronization problems
Example (1): solution to the CS problem

• Semaphore called mutex initialized to 1 (intuitive meaning: CS available)
• Each process:

wait(mutex);

/* critical section */

signal(mutex);

/* remainder section */

Example (2): two processes 𝑃1 and 𝑃2 want to ensure that action 𝐴1 by 𝑃1 happens before
action 𝐴2 by 𝑃2

• Semaphore sync initialized to 0 (intuitive meaning: “𝐴1 has not happened yet”)
• Processes:

P1() {

A1;

signal(sync);

}

P2() {

wait(sync);

A2;

}

32/46 2023 INF107 Operating Systems — Synchronization



Semaphore Implementation

Must guarantee that no two processes can execute the wait() and signal() on the same
semaphore at the same time
Thus, the implementation becomes the critical section problem where the wait and signal code
are placed in the critical section

• We know how to address this, but it would be nice to do so without busy waiting
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Semaphore Implementation with no Busy Waiting

Each semaphore is associated to a waiting queue
• In the kernel, known to the scheduler

Two basic operations:
• Block: place the process invoking the operation on the appropriate waiting queue

– It will stop executing → no busy wait
• Wakeup: remove one of processes in the waiting queue (usually, but not necessarily, in FIFO order)

and place it in the ready queue

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}
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Monitors
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Problems with Semaphores

While the atomicity of operations is guaranteed, programmers can still (and do) shoot themselves
in the foot with semaphores

• E.g., inverse wait() … signal() around a CS → race condition
• E.g., wait() one time too many → process blocks forever

These—and others—are examples of what can occur when semaphores and other
synchronization tools are used incorrectly.
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Monitors

A high-level abstraction that provides a convenient and effective mechanism for process
synchronization
Abstract Data Type, internal variables only accessible by code within the procedure
Only one process may be active within the monitor at a time
Avoid by construction certain classes of misuse of synchronization tools

Monitor components:
• Shared data
• Operations (= “methods”) that processes can invoke
• Initialization code, executed upon monitor creation
• Waiting queue of processes willing to execute monitor code (when

another process is executing monitor code)
Implementation

• One semaphore mutex per monitor instance
• Wrap the body of each operation 𝑃 in a wait(mutex) …
signal(mutex) critical section
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Java Monitors

Monitor is an abstract notion, which can be implemented in a high-level programming languages
and provided as a concrete programming tool
For example, it is implemented in Java using classes and the synchronized keyword

public class BoundedBuffer<E> {

// Shared data:

private static final int BUFFER SIZE = 5;

private int count, in, out;

private E[] buffer;

public BoundedBuffer() {

// Initialization code

}

public synchronized void insert(E item) {

// Java runtime guarantees that only one thread at a time will execute *any* synchronized

// method on a given class *instance*. (Others will wait for completion.)

}

public synchronized E remove() {

// ...

}

}
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Liveness
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Liveness

Processes may have to wait indefinitely while trying to acquire a synchronization tool such as a
mutex lock or semaphore.
Waiting indefinitely violates the progress and bounded-waiting criteria discussed at the beginning
of this chapter.
Liveness refers to a more general set of properties that a system must satisfy to ensure making
progress.

• Indefinite waiting is an example of a liveness failure.
• Other common cases/patterns exist.
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Deadlock

Definition (Deadlock)

Two or more processes are waiting indefinitely for an event that can be caused by only one of the
waiting processes.

Example: Let 𝑆 and 𝑄 be two semaphores initialized to 1
P0() {

wait(S);

wait(Q);

/* ... */

signal(S);

signal(Q);

}

P1() {

wait(Q);

wait(S);

/* ... */

signal(Q);

signal(S);

}

Consider if 𝑃0 executes wait(S) and 𝑃1 wait(Q).
When 𝑃0 executes wait(Q), it must wait until 𝑃1 executes signal(Q).
However, 𝑃1 is waiting until 𝑃0 execute signal(S).
Since these signal() operations will never be executed, 𝑃0 and 𝑃1 are deadlocked.
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Deadlock Characterization

More generally, deadlock can arise if four conditions hold simultaneously:

1. Mutual exclusion: only one thread at a time can use a resource
2. Hold and wait: a thread holding at least one resource is waiting to acquire additional resources

held by other threads
3. No preemption: a resource can be released only voluntarily by the thread holding it, after that

thread has completed its task
4. Circular wait: there exists a set {𝑇0, 𝑇1, … , 𝑇𝑛−1} of waiting threads such that

∀𝑖, 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑇𝑖 is waiting for a resource that is held by 𝑇(𝑖+1) mod 𝑛
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Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state:
• Deadlock prevention (static)

– Invalidate one of the four necessary conditions for a deadlock
– E.g., invalidate “hold and wait” → Require each thread to request and be allocated all resources before

execution begins; or allow a thread to request resources only if it has none allocated
– E.g., invalidate “circular wait” → Impose a total ordering of all resource types, and require that each thread

requests resources in an increasing order of enumeration

Deadlock avoidance
• Requires that the system has some additional a priori information available, e.g., the maximum

number of resources of each type that a thread may need
• The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that

there can never be a circular-wait condition
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Methods for Handling Deadlocks (cont.)

Allow the system to enter a deadlock state and then recover
• Dynamically detect that a deadlock has occurred

– Maintain a graph of available resources as well as who wants/waits for them
– Detect a circular wait loop

• Recovery
– Process termination: kill one of the threads involved
– Resource preemption: take back an allocated resource (“rollback”)

Ignore the problem and pretend that deadlocks never occur in the system
• Most OS do this, at least in the general case.
• They can still detect limited forms of deadlocks around individual resources and prevent them by

refusing to give a resource to the last requesting process that will induce a deadlock.
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Liveness (cont.)

Other forms of liveness violations:

Starvation: indefinite blocking
• A process may never be removed from the semaphore queue in which it is suspended

Priority inversion: Scheduling problem when lower-priority process holds a lock needed by
higher-priority process

• 3 processes with priorities 𝐿 < 𝑀 < 𝐻
• 𝐿 holds a lock that 𝐻 wants
• 𝑀 preempts 𝐿
• 𝑀 (< 𝐻), who is not involved in the lock at all, impacts how much 𝐻 has to wait to obtain the lock

(which should not happen with priority-based scheduling)
• Solution: priority-inheritance protocol: 𝐿 temporarily inherits 𝐻 priority until lock release
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Reading List

You should study on books, not slides! Reading material for this lecture is:

Silberschatz, Galvin, Gagne. Operating System Concepts, Tenth Edition:
• Chapter 6: Synchronization Tools
• Chapter 7: Synchronization Examples
• Chapter 8: Deadlocks

Credits:

Some of the material in these slides is reused (with modifications) from the official slides of the
book Operating System Concepts, Tenth Edition, as permitted by their copyright note.
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