
Operating Systems — Introduction
and Processes
INF107

Stefano Zacchiroli
2023



INF107 — Where are we in our Trip

INF107: “from the logic gate to the operating system”

Part 1: logic gate → processor
Part 2: processor → system programs (C programming language)
Part 3: system programs → operating system ⇐ we are here

Goals of Part 3:

provide an overview of what Operating Systems (OS) do,
how OS work internally and how to implement one.

2/53 2023 INF107 Operating Systems — Introduction and Processes



What Operating Systems Do

3/53 2023 INF107 Operating Systems — Introduction and Processes



Warm-up Quiz

Q: what’s an operating system (in your own words)?
A: <your answer here>

4/53 2023 INF107 Operating Systems — Introduction and Processes



What is an Operating System? (Intuition)

A program that acts as an intermediary between a user of a computer and the computer hardware

Operating system goals:
• Execute user programs and make solving user problems easier
• Make the computer system convenient to use
• Use the computer hardware in an efficient manner

5/53 2023 INF107 Operating Systems — Introduction and Processes



What Operating Systems Do

Depends on the point of view
• Users want convenience, ease of use and good performance
• Don’t care about resource utilization

But shared computer such as mainframe or minicomputer must keep all users happy
• Operating system is a resource allocator and control program making efficient use of HW and

managing execution of user programs
Resources are scarce in many contexts for different reasons

• Servers: many users, need to share resources between them
• Mobile devices: optimize for battery life
• Embedded devices: limited hardware

Operating systems arbiter the allocation of scarce hardware resources to demanding users, in the best
possible way.1

1For some precise measure of “best”.
6/53 2023 INF107 Operating Systems — Introduction and Processes



What is an Operating System? (Definitions)

No universally accepted definition
“Everything a software vendor ships when you order an OS” is a good approximation

• But varies wildly
“The one program running at all times on the computer” is the kernel, part of the OS
Everything else is either:

• A system program2 (ships with the OS, but is not part of the kernel), or
• An application program, all programs not associated with the OS

Today’s OSes for general purpose and mobile computing also include middleware — a set of
software frameworks that provide additional services to application developers such as databases,
multimedia, graphics

2cf. INF107, part 2
7/53 2023 INF107 Operating Systems — Introduction and Processes



Basics of Computer System Structure

8/53 2023 INF107 Operating Systems — Introduction and Processes



Computer System Organization and the Bus

One or more CPUs and device controllers connect through a common system bus providing
access to shared memory
Concurrent execution of CPUs and devices competing for memory cycles

9/53 2023 INF107 Operating Systems — Introduction and Processes



Device Controllers and Interrupts

Each device controller is in charge of a particular device type
Each device controller has a local buffer
Each device controller type has an operating system device driver (= software) to manage it
CPU moves data: main memory ↔ local buffers
I/O is from the device to local buffer of controller
Device controller informs CPU that it has finished its operation by causing an interrupt

10/53 2023 INF107 Operating Systems — Introduction and Processes



Interrupts

Interrupt transfers control to the interrupt service routine generally, through the interrupt vector,
which contains the addresses of all the service routines
Interrupt architecture must save the address of the interrupted instruction (to return to it later)
A trap or exception is a software-generated interrupt caused either by an error or a user request

• They are handled the same way than I/O interrupt
Modern operating systems are mostly interrupt-driven

11/53 2023 INF107 Operating Systems — Introduction and Processes



Interrupts (cont.)

Upon receiving an interrupt, the OS
preserves the state of the CPU by storing
the registers and the program counter (PC)
Determines which type of interrupt has
occurred
Separate segments of code determine what
action should be taken for each type of
interrupt

A typical I/O scenario hence corresponds to the
workflow shown on the right.

12/53 2023 INF107 Operating Systems — Introduction and Processes



Storage Hierarchy

Storage is organized in a hierarchy
with varying: speed, cost, volatility

• Main memory: only large
storage that CPU can access
directly

• Secondary storage: large
nonvolatile storage capacity.
Main types: hard disk drives
(HDD), non-volatile memory
(NVM)

• Tertiary storage: even larger
and slower (e.g., for backup
purposes)

13/53 2023 INF107 Operating Systems — Introduction and Processes



Storage Characteristics

14/53 2023 INF107 Operating Systems — Introduction and Processes



Caching

Important principle, performed at many levels in a computer (hardware, OS, software)
Information in use copied from slower to faster storage temporarily
Faster storage (cache) checked first to determine if information is there

• If it is (cache “hit”), information used directly from the cache (fast)
• If not (cache “miss”), data copied to cache and used there

Cache smaller than storage being cached
• Cache management important design problem
• Cache size and replacement policy

Example

The path of an integer 𝑥 from disk to register (where the CPU can actually do something with it):

15/53 2023 INF107 Operating Systems — Introduction and Processes



How a Modern Computer Works

Modern general-purpose computers:
Implement the von Neumann
architecture, where memory
contains both data and instructions,
interpreted one way or another by
the CPU (if the PC points to it → it’s
an instruction)
Allow devices to read/write memory
directly (Direct Memory Access, or
DMA) to reduce bus contention

16/53 2023 INF107 Operating Systems — Introduction and Processes



Multiprocessor Systems

Most systems use a single general-purpose processor
• Plus several special-purpose processors, e.g., in device

controllers
Multiprocessors systems growing in use and
importance

• Also known as parallel systems, tightly-coupled systems
• Advantages:

1. Increased throughput
2. Economy of scale
3. Increased reliability (e.g., fault tolerance)

Two types:
• Asymmetric Multiprocessing – each processor is

assigned a special task
• Symmetric Multiprocessing – each processor performs

all tasks

Figure: a symmetric multiprocessing
architecture

17/53 2023 INF107 Operating Systems — Introduction and Processes



Multicore Systems

Each physical processor chip (sometime confused with
the term “CPU”) can host one or more units capable of
executing CPU instructions at a time, called core
A chip containing more than one core is called multicore
Can mix and match multiprocessor and multicore in the
same system

• E.g., current high-end laptop: 1 processor, 14 cores
• E.g., current high-end server: 4 processors, 24 cores

each
Note: only with more than one core (no matter if on the
same chip or different ones) there can be parallelism,
i.e., more than one CPU instructions executed at the
same time Figure: a single-processor, dual-core (=

two cores) architecture

18/53 2023 INF107 Operating Systems — Introduction and Processes



Multiprogramming and Multitasking

Multiprogramming (batch systems)

Single user cannot always keep CPU and I/O devices busy
Multiprogramming organizes jobs (code and data) so CPU always has one to execute
A subset of total jobs in system is kept in memory
One job selected and run via job scheduling
When job has to wait (for I/O for example), OS switches to another job

Multitasking (timesharing)
A logical extension of Batch systems — the CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive computing

Response time should be short (<< 1 second)
Each user has at least one program executing in memory → process
If several jobs ready to run at the same time → CPU scheduling
If processes don’t fit in memory, swapping moves them in and out to run
Virtual memory allows execution of processes not completely in memory

Memory layout:
code+data of OS
and all executing
programs is in
memory.

19/53 2023 INF107 Operating Systems — Introduction and Processes



Dual-mode Operation

Dual-mode operation allows OS to protect itself and other system components
• User mode and kernel mode

Mode bit provided by hardware
• Provides ability to distinguish when system is running user code or kernel code
• When user code is running → mode bit is “user”
• When kernel code is executing → mode bit is “kernel”

How do we guarantee that user does not explicitly set the mode bit to “kernel”?
• User code can requests system services by invoking system calls (more on this later); system calls

change mode to kernel, return from call resets it to user
Some instructions designated as “privileged” are only executable in kernel mode

20/53 2023 INF107 Operating Systems — Introduction and Processes



Timer

An example of how privileged instructions are used (as well as a useful service): the system timer to
prevent infinite loops (or, more generally, process hogging resources):

Timer is set to interrupt the computer after some time period
Keep a counter that is decremented by the physical clock
Operating system set the counter (privileged instruction)
When counter zero generate an interrupt
Set up before scheduling process to regain control or terminate program that exceeds allotted time

21/53 2023 INF107 Operating Systems — Introduction and Processes



Operating System Responsibilities

22/53 2023 INF107 Operating Systems — Introduction and Processes



Operating System Responsibilities

An operating system has several responsibilities, which we briefly present in the following; we will
expand upon most of them later in the course of INF107.

Several of OS responsibilities belong to the general area of managing resources that executing
programs need to run:

CPU, memory, file-system, mass-storage, I/O

Other OS responsibilities are more general and cross-cutting, such as:

Protection and security
Virtualization

23/53 2023 INF107 Operating Systems — Introduction and Processes



Process Management

A process is a program in execution (more on this later). It is a unit of work within the system.
Process needs resources to accomplish its task

• CPU, memory, I/O, files
• Initialization data

Process termination requires reclaim of any reusable resources

Single-threaded process has one program counter specifying location of next instruction to
execute

• Process executes instructions sequentially, one at a time, until completion
Multi-threaded process has one program counter per thread3

Typically system has many processes, some user, some operating system running concurrently on
one or more CPUs

• Concurrency by multiplexing the CPUs among the processes / threads

3More on threads in next lecture.
24/53 2023 INF107 Operating Systems — Introduction and Processes



Process Management (cont.)

OS activities for process management

Creating and terminating processes
Suspending and resuming processes
Providing mechanisms for:

• Process synchronization
• Process communication
• Deadlock handling (more on this later)

25/53 2023 INF107 Operating Systems — Introduction and Processes



Memory Management

To execute a program all (or part) of the instructions must be in memory
All(or part) of the data that is needed by the program must be in memory
Memory management determines what is in memory and when

OS activities for memory management

Keeping track of which parts of memory are currently being used and by whom
Deciding which processes (or parts thereof) and data to move into and out of memory
Allocating and deallocating memory space as needed

26/53 2023 INF107 Operating Systems — Introduction and Processes



File-system Management

OS provides uniform, logical view of information storage:

Abstracts physical properties to logical storage unit: file
Each medium is controlled by device (i.e., disk drive, tape drive)
Files usually organized into directories
Access control to determine who can access what

OS activities for file-system management

Creating and deleting files and directories
Primitives to manipulate files and directories
Mapping files onto secondary storage
Backup files onto stable (non-volatile) storage media

27/53 2023 INF107 Operating Systems — Introduction and Processes



Mass-storage Management

Usually disks used to store data that does not fit in main memory or data that must be kept for a
“long” period of time
Proper management is of central importance
Entire speed of computer operation hinges on disk subsystem and its algorithms

OS activities related to mass-storage management

Mounting and unmounting
Free-space management
Storage allocation
Disk scheduling
Partitioning
Protection

28/53 2023 INF107 Operating Systems — Introduction and Processes



I/O Management

One purpose of OS is to hide peculiarities of hardware devices from the user
I/O subsystem responsible for

• Memory management of I/O including buffering (storing data temporarily while it is being transferred),
caching (storing parts of data in faster storage for performance), spooling (the overlapping of output
of one job with input of other jobs)

• General device-driver interface
• Drivers for specific hardware devices

29/53 2023 INF107 Operating Systems — Introduction and Processes



Protection and Security

Protection: any mechanism for controlling access of processes or users to resources defined by
the OS
Security: defense of the system against internal and external attacks

• Huge range, including: denial-of-service, worms, viruses, identity theft, theft of service
Systems generally first distinguish among users, to determine who can do what

• User identities (user IDs, security IDs) include name and associated number, one per user
• User ID then associated with all files, processes of that user to determine access control
• Group identifier (group ID) allows set of users to be defined and controls managed, then also

associated with each process, file
• Privilege escalation (controlled) allows user to change to effective ID with more rights

30/53 2023 INF107 Operating Systems — Introduction and Processes



Virtualization

Allows operating systems to run applications within other OSes
• Vast and growing industry

Emulation used when source CPU type different from target type (i.e., PowerPC to Intel x86)
• Generally slowest method
• When computer language not compiled to native code — Interpretation

Virtualization — OS natively compiled for CPU, running guest OS also natively compiled
• E.g., VMware running WinXP guests, each running applications, all on native WinXP host OS
• VMM (Virtual Machine Manager, part of the OS) provides virtualization services

31/53 2023 INF107 Operating Systems — Introduction and Processes



Operating System Services

32/53 2023 INF107 Operating Systems — Introduction and Processes



Operating System Services

Operating systems provide a number of services to users and running programs

Services for users:
User interfaces: CLI,
GUI, touch screen
Program execution

Services for running programs:
I/O, file-system ops.
Communication between
programs (locally or via
the network)
Resource allocation,
error detection
Accounting, protection,
security

33/53 2023 INF107 Operating Systems — Introduction and Processes



System Calls

Running programs request OS services by invoking system calls (or syscalls, for short).

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)
Mostly accessed by programs via a high-level Application Programming Interface (API)
implemented by system libraries (e.g., the C standard library, or libc) rather than direct syscall
invocation
Common high-level APIs for syscalls:

• Win32 API for Windows
• POSIX API for UNIX systems (including Linux and Mac OS)
• (subset of) Java API for the Java Virtual Machine (JVM)

34/53 2023 INF107 Operating Systems — Introduction and Processes



System Calls — Example

Consider a program that interactively asks the user for two file names and copies the content of one file
to the other. How many system call (invocations) are involved in such a task?

Try it out for yourself by running strace cp input_file output_file in a terminal.
Bottom line: a lot of what running programs do is using OS services.

35/53 2023 INF107 Operating Systems — Introduction and Processes



System Calls — Program, libc, OS — Example (1)
read is a standard POSIX system call that
requests the service of reading content from a
file into a memory buffer of the requesting
program (e.g., a byte array)

• (You will learn about read details later.)
The read system call can be invoked by C
programs by calling the read function
implemented in the libc
read is a blocking system call; calling
program suspends its execution, waiting for
completion

36/53 2023 INF107 Operating Systems — Introduction and Processes



System Calls — Program, libc, OS — Example (2)

Other, higher-level functions of the
C standard library (and other
libraries) are not 1-1 mappings to
system calls, but call into system
calls nonetheless
For example, printf uses write
(the complementary system call of
read) to write formatted output to
standard output (usually connected
to your terminal)
Note that user code (program and
libc) executes in user mode
whereas system call code executes
in kernel mode

37/53 2023 INF107 Operating Systems — Introduction and Processes



System Calls — User and Kernel Mode

38/53 2023 INF107 Operating Systems — Introduction and Processes



Types of System Calls

Many classes of system call exist, depending
on the type of service requested

• Process control
• File management
• Device management
• Information maintenance
• Communications
• Protection

The sets of available system calls vary across
OS
You will learn about several (UNIX) system
calls in the lab sessions of INF107

39/53 2023 INF107 Operating Systems — Introduction and Processes



Processes

40/53 2023 INF107 Operating Systems — Introduction and Processes



Process — Concept

An operating system executes a variety of programs that run as a process
A process is a a program in execution
Process execution must progress in sequential fashion
Multiple parts (seen in INF 107, Part 2):

• The program code, also called text section
• Current activity including program counter and other processor registers
• Stack containing temporary data

– Function parameters, return addresses, local variables
• Data section containing global variables
• Heap containing memory dynamically allocated during run time

Program vs Process

A program is a passive entity stored on disk (executable file)
A process is an active entity
Program turns into a process when an executable file is loaded into memory for execution
One program can correspond to several processes (e.g., multiple users executing same program)

41/53 2023 INF107 Operating Systems — Introduction and Processes



Memory Layout of a C Program (Redux)

(Just a reminder, you’ve seen this before.)

42/53 2023 INF107 Operating Systems — Introduction and Processes



Process State

As a process executes it
changes state:

New: being created
Running: its instructions
are being executed on a
processor
Waiting: waiting for
some event to occur
(cannot be executed,
temporarily)
Ready: waiting to be
assigned to a processor
Terminated: finished
execution

Figure: process state machine

43/53 2023 INF107 Operating Systems — Introduction and Processes



Process Control Block (PCB)

The full status of a process is captured by its Process Control Block (PCB), which
contains:

Process state — running, waiting, etc.
Program counter — location of instruction to next execute
CPU registers — contents of all process-centric registers
CPU scheduling information — priorities, scheduling queue pointers
Memory-management information — memory allocated to the process
Accounting information — CPU used, clock time elapsed since start, time
limits
I/O status information — I/O devices allocated to process, list of open files

All process PCBs are maintained by the OS using dedicated data structures.

44/53 2023 INF107 Operating Systems — Introduction and Processes



Process Scheduling
Process scheduler selects among available processes for next execution on CPU core
Goal: maximize CPU use; Implementation: quickly switch processes on/off CPU core(s)
Maintains scheduling queues of processes

• Ready queue: set of all processes residing in main memory, ready and waiting to execute
• Wait queues: (plural!) set of processes waiting for an event (e.g., I/O, process termination, etc.)
• Processes migrate among the various queues as they change state

45/53 2023 INF107 Operating Systems — Introduction and Processes



Context Switch

A context switch occurs when the CPU switches
from executing one process to another.

To execute a context switch, the OS must
save the state (or “context”) of the old process
and load the saved state for the new process
Full context of a process represented in the
PCB
Context-switch time is pure overhead; the
system does no useful work while switching

• The more complex the OS and the PCB
→ the longer the context switch

Figure: context switch timeline (from top to bottom)

46/53 2023 INF107 Operating Systems — Introduction and Processes



Process Creation

Parent process create children processes, which, in turn create other processes, forming a tree
of processes
Generally, process identified and managed via a process identifier (pid)
Resource sharing options (depending on the OS):

• Parent and children share all resources
• Children share subset of parent’s resources
• Parent and child share no resources

Execution options (ditto):
• Parent and children execute concurrently
• Parent waits until children terminate

Address space options (ditto):
• Child duplicate parent’s address space
• Child has a (new) program loaded into it

47/53 2023 INF107 Operating Systems — Introduction and Processes



Process Creation on UNIX — Example

fork() system call creates new process
• Child shares some parent’s resources (e.g., open files)
• Parent and child execute concurrently
• Child duplicates parent’s address space

(optional) exec() system call used after a fork() to replace the process address space with a new
program
(optional, for coordination) Parent process calls wait() system call to wait for the child to
terminate

(More on this in the upcoming INF107 lab session.)

48/53 2023 INF107 Operating Systems — Introduction and Processes



Process Creation on UNIX — Example (cont.)

1 #include <stdio.h>

2 #include <sys/types.h>

3 #include <sys/wait.h>

4 #include <unistd.h>

5
6 int main() {

7 pid_t pid;

8 pid = fork(); /* create a child process */

9 if (pid < 0) { /* fork() syscall failed */

10 fprintf(stderr, "E: Fork failed.\n");

11 return 1;

12 } else if (pid == 0) { /* child process */

13 execlp("/bin/ls", "ls", NULL);

14 } else { /* parent process */

15 wait(NULL); /* parent will wait for the child to complete */

16 printf("I: Child completed.\n");

17 }

18 return 0;

19 }

49/53 2023 INF107 Operating Systems — Introduction and Processes



Process Representation in Linux — Example

In the Linux kernel, the full status of a process (PCB) is captured in a task_struct structure (defined
in include/linux/sched.h).

1 pid t_pid; /* process identifier */

2 long state; /* state of the process */

3 unsigned int time_slice; /* scheduling information */

4 struct task_struct *parent; /* this process’s parent */

5 struct list_head children; /* this process’s children */

6 struct files_struct *files; /* list of open files */

7 struct mm_struct *mm; /* address space of this process */

8 /* ... */

50/53 2023 INF107 Operating Systems — Introduction and Processes

https://github.com/torvalds/linux/blob/master/include/linux/sched.h


Interprocess Communication

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other processes, including sharing data
Reasons for cooperating processes: information sharing, computation speedup, modularity
Cooperating processes need interprocess communication (IPC)
Two models of IPC: (a) shared memory, (b) message passing

51/53 2023 INF107 Operating Systems — Introduction and Processes



Interprocess Communication — Examples

IPC cannot happen without OS intervention
• OS services must be requested either for each communication (often the case in message passing),
• or initially to setup the communication mechanism (often the case for shared memory)

Example of UNIX / POSIX IPC mechanisms:
• Message passing: pipe, mkfifo, mq_open/mq_send/mq_receive/mq_close, socket
• Shared memory: mmap, shm_open/shm_unlink

(More on some of these in later INF107 lectures and lab sessions.)

52/53 2023 INF107 Operating Systems — Introduction and Processes



Reading List

You should study on books, not slides! Reading material for this lecture is:

Silberschatz, Galvin, Gagne. Operating System Concepts, Tenth Edition:
• Chapter 1: Introduction
• Chapter 2: Operating-System Structures
• Chapter 3: Processes

Credits:

Some of the material in these slides is reused (with modifications) from the official slides of the
book Operating System Concepts, Tenth Edition, as permitted by their copyright note.

53/53 2023 INF107 Operating Systems — Introduction and Processes

https://www.os-book.com/OS10/
https://www.os-book.com/OS10/slide-dir/
https://www.os-book.com/OS10/

	What Operating Systems Do
	Basics of Computer System Structure
	Operating System Responsibilities
	Operating System Services
	Processes

