
Part 2 - The C Language
INF107

Florian Brandner
2023

Lecture 1

2/265 2023 INF107 Part 2 - The C Language

Welcome

3/265 2023 INF107 Part 2 - The C Language

Resources

Book:
EFFECTIVE C
An Introduction to Professional C
Programming
Robert C. Seacord
No Starch Press, 2020
ISBN-13: 978-1-71850-104-1
Code casts:
From the popular MOOC “Programmer en C”
Rémi Sharrock
https://inf107.enst.fr/code-cast
CPP Reference:
https://en.cppreference.com/w/c

R O B E R T C . S E A C O R D

A N I N T R O D U C T I O N T O

P R O F E S S I O N A L C P R O G R A M M I N G

E F F E C T I V E CE F F E C T I V E C

4/265 2023 INF107 Part 2 - The C Language

https://inf107.enst.fr/code-cast
https://en.cppreference.com/w/c

Why C?

C has been among the most popular languages1 of the TIOBE index since 2001.
Widely available on most computer platforms/operating systems.
Simple and flexible.
Implementation basis for many other languages.
Good for teaching:

• Exposes the computer system to the programmer.
• Full control over the computer system.
• Allows to make many mistakes – (un-) fortunately.

1https://www.tiobe.com/tiobe-index/
5/265 2023 INF107 Part 2 - The C Language

https://www.tiobe.com/tiobe-index/

History and Milestones

1972: Invented by Dennis Ritchie and Ken Thompson at Bell Telephone Laboratories
Needed to develop their own operating system … Unix (see Part 3 of this course)

1989: First standard (ANSI C or C89)
Adopted by ISO in the next year (C90)

1999: New ISO standard (C99) - widely supported
Boolean type
Integer types widht standardized sizes

2011: New ISO standard (C11) - well supported today
Unicode support
Atomics and support for multi-threading

2017: New ISO standard (C17) - mostly corrections
202x: Upcoming ISO standard (C23) currently under development

6/265 2023 INF107 Part 2 - The C Language

Standards

Define what the language is (and what not).

Standard ≠ Implementation

• Not everything in standards is always implemented.
• Some computer platforms/operating systems add extensions.
• Some features differ between computer platforms/operating systems.
• Some things are implementation-defined, unspecified, or even undefined.

We’ll use C11 for this course

• Modern, still widely supported.

For special domains

• MISRA C: strict guidelines for safety-critical systems (automotive)
• CERT C: for less strict guidelines for less safety-critical systems
• Embedded C: for embedded systems with special features

7/265 2023 INF107 Part 2 - The C Language

Compilers - From source code to machine code

8/265 2023 INF107 Part 2 - The C Language

From source code to machine code (1)

Instruction
Memory Decode

Register
File

Sign-Extend

Data
Memory

P
C

+

&

+

Shift

4

0

1

1

0

1

0

(a) ”Source code” of a program (b) Processor executing the program

Data, Constants, Variables

Instructions, Machine Code

The compiler translates the source code, placing machine code (instructions) and data into memory.

9/265 2023 INF107 Part 2 - The C Language

From source code to machine code (1)

Instruction
Memory Decode

Register
File

Sign-Extend

Data
Memory

P
C

+

&

+

Shift

4

0

1

1

0

1

0

(a) ”Source code” of a program (b) Processor executing the program

Data, Constants, Variables

Instructions, Machine Code

In Part 1 you finished with a Harvard Architecture, but …

10/265 2023 INF107 Part 2 - The C Language

From source code to machine code (2)

Instruction
Cache Decode

Register
File

Sign-Extend

Data
Cache

P
C

+

&

+

Shift

4

0

1

1

0

1

0

Memory

Bus

(a) ”Source code” of a program (b) Processor executing the program

Data, Constants, Variables

Instructions, Machine Code

… today we have a Von Neumann Architecture (code and data are stored in the same memory).

11/265 2023 INF107 Part 2 - The C Language

Memory Organization

We have to agree on an organization of the processor’s memory:
A part of the memory is reserved for the operating system.
(code and data of the OS - see Part 3)
Another part for the machine code of the program.
The rest is for storing data of the program:

• Global data, accessible all the time.
• Stack data, accessible only temporarily.
• Heap data, explicitly managed by the programmer.

Operating
System

Machine
Code

Global
Data

Heap
Data

Stack Data

Address 0

A
dd

re
ss

es
in

cr
ea

se

12/265 2023 INF107 Part 2 - The C Language

Compilers

A compiler translates high-level source code to low-level binary code:

Statements and expressions are translated to assembly or machine code.
• Each instruction is stored at a unique address.
• Related instructions are grouped together in close proximity (close addresses).
• Example: an addition (+) becomes an add for a RISC-V.

Data structures and variables are stored in memory.
• Using a binary representation (two’s-complement, BCD coding, …)
• Each data item has a unique address.
• Related data items are grouped together.

– Stack, heap, or global

The compiler respects the memory layout from before
(i.e., code and data are disjoint)

13/265 2023 INF107 Part 2 - The C Language

The C Language

14/265 2023 INF107 Part 2 - The C Language

Keywords

break extern static auto _Atomic (C11)
case float struct goto _Complex (C99)
char for switch inline (C99) _Generic (C11)
const if typedef register _Imaginary (C99)
continue int union restrict (C99) _Noreturn (C11)
default long unsigned volatile _Thread_local (C11)
do return void _Alignas (C11)
double short while

else signed _Alignof (C11)2

enum sizeof _Bool (C99)3

_Static_assert (C11)

https://en.cppreference.com/w/c/keyword
2Typically used through an alias: alignof
3Typically used through an alias: bool

15/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/keyword

A first C program (1)

It contains comments.
(// line and /* ... */ multi-line comments)
It includes some parts of the standard library.
(stdio.h = Input/Output, stdlib.h = other stuff)
It declares a global variable message.

• The initial value of the variable is the string
"Hello World".

• Its type is const char*.
(we’ll get back to types in a minute)

It defines a function main

• The main function has a special meaning:
when executed, the program starts here.

• Which calls the printf function from the IO library.
• Returns zero.

(and thus ends the program)

/* Include functionality from the

standard library */

#include <stdio.h>

#include <stdlib.h>

// Declare a global variable

const char message[] = "Hello World";

// Define a function

int main(int argc, char *argv[])

{

printf("%s\n", message);

return EXIT_SUCCESS;

}

Content of hello-world.c.

16/265 2023 INF107 Part 2 - The C Language

A First C Program (2)

To run the program we have to compile it first, only then we can execute it:
tp-5b07-26:~/tmp> ls

hello-world.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g hello-world.c -o hello-world

tp-5b07-26:~/tmp> ls

hello-world hello-world.c

tp-5b07-26:~/tmp> ./hello-world

Hello World

17/265 2023 INF107 Part 2 - The C Language

What did the compiler do?

The compiler produced the file hello-world:

This is an executable file, i.e., a program.
It contains machine code.
(e.g., equivalent to the source code of main)
It contains binary data.
(e.g., the string "Hello World")
The compiler assigns the code and data to addresses in the memory.
In order to execute the program:

1. Load the code and data from the file into memory.
(to the addresses specified by the compiler)

2. Tell to processor to jump to the first instruction of the program.
3. The processor starts executing the program …

18/265 2023 INF107 Part 2 - The C Language

Basic C Types

19/265 2023 INF107 Part 2 - The C Language

What is a Type?

Types are a common concept in programming languages:

A type specifies which values are admissible at a certain point in a program
(e.g., as function arguments, values of a variable, operands to an operator, …)

Dynamic vs. static typing:

• Dynamic typing: (e.g., Python, JavaScript, …)
The type of values is determined and checked while the program is running.

• Static typing: (e.g., Java, C, C++, OCaml, Haskell, …)
The type of every value is known and checked at compile-time.

C is statically typed.

20/265 2023 INF107 Part 2 - The C Language

Basic C Types

In C each variable needs a fixed type. Types are grouped into classes:

Void type:
A special type without values.
Boolean type:
For boolean data with only two values (true/false or 0/1).
Integer types:
For characters and integer numbers (signed or unsigned).
Floating-point types:
For floating-point numbers.

Note that the C standard does not specify the data format, but most implementations actually use a
binary representation (two’s complement and IEEE 754).

https://en.cppreference.com/w/c/language/type

21/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/type

The Void Type

The C language defines a special type void :

Special type with no values.

Used to indicate that functions do not return a value.

Can be used to indicate that functions do not take any argument.

Can be used with pointers (covered later in the lecture).

22/265 2023 INF107 Part 2 - The C Language

Boolean Type

Added only by C99, thus a rather cryptic name: _Bool

Examples:
_Bool done = false;

_Bool isFalse = 0;

_Bool isTrue = 1;

_Bool isTrueToo = .5;

Initializes the variable done to false.
Initializes the variable isFalse to false.
Initializes the variable isTrue to true.
Initializes the variable isTrueToo to true.

Alias bool
An alias is defined in the library, but requires the following line in the code:
#include <stdbool.h>

https://en.cppreference.com/w/c/language/arithmetic_types#Boolean_type

23/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/arithmetic_types#Boolean_type

Recapture: Number Representation

Integer numbers:
Usually represented using a sequence of 𝑛 bits (0/1).

• Unsigned integers - Simple number representation with base 2:
∑𝑛−1

𝑖=0 𝑏𝑖𝑡𝑖 ⋅ 2𝑖

• Signed integers: - Uses the two’s-complement representation:
−(𝑏𝑖𝑡𝑛−1 ⋅ 2𝑛−1) + ∑𝑛−2

𝑖=0 𝑏𝑖𝑡𝑖 ⋅ 2𝑖

• Least significant bit: 𝑏𝑖𝑡𝑖 with 𝑖 = 0
• Most significant bit: 𝑏𝑖𝑡𝑖 with 𝑖 = 𝑛 − 1

Floating-point numbers: Usually based on the IEEE 754 standard.4
• Sign: A single sign bit.
• Exponent: A unsigned number (e.g., 8, 11, or 15 bits).
• Significand: A unsigned number (e.g., 23, 53, or 112 bits).

4https://en.wikipedia.org/wiki/IEEE_754
24/265 2023 INF107 Part 2 - The C Language

https://en.wikipedia.org/wiki/IEEE_754

Integer Types

C defines several integer types:

Signed Unsigned Guaranteed Size5 In Lab

signed char unsigned char at least 8 bits 8 bits
short int unsigned short int at least 16 bits 16 bits
int unsigned int at least 16 bits 32 bits
long int unsigned long int at least 32 bits 64 bits
long long int unsigned long long int at least 64 bits 64 bits

The number format is not specified though, but usually is two’s complement for signed integers.

https://en.cppreference.com/w/c/language/arithmetic_types

5Minimal size guaranteed by C standard in bits.
25/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/arithmetic_types

Integer Types Aliases (1)

Integer types can be written in many variants:

Signed Type Aliases

short

short int signed short

signed short int

int
signed

signed int

long

long int signed long

signed long int

long long

long long int signed long long

signed long long int

26/265 2023 INF107 Part 2 - The C Language

Integer Types Aliases (2)

Unsigned integer types have aliases too (but fewer):

Signed Type Aliases

unsigned short int unsigned short

unsigned int unsigned

unsigned long int unsigned long

unsigned long long int unsigned long long

27/265 2023 INF107 Part 2 - The C Language

Examples: Integer Types and Literals

unsigned char c = 225;

int i = 512;

short octal = 010;

signed hex = 0x10;

unsigned ui = 5u;

long int li = 0x20000010l;

long long lli = 0x2020000010ll;

Initializes the variable c to 225.
Initializes i to 512.
Initializes octal to 8 (using base 8).
Initializes hex to 16 (using base 16).
Initializes ui to 5 (using unsigned literal suffix).
Initializes li to 536 870 928 (long suffix and base 16).
Initializes lli to 137 975 824 400 (long long suffix and
base 16).

https://en.cppreference.com/w/c/language/integer_constant

28/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/integer_constant

Floating-Point Types and Literals

float Single-precision, usually IEEE 754 format (32 bit).
double Double-precision, usually IEEE 754 format (64 bit).
long double Extended-precision, usually IEEE 754 format (128 bit).

Examples:

float f = .5;

double d = 1.2e-3;

long double ld = 2.0e+308;

float hex = 0x2.ap3;

Initializes the variable f to 0.5.
Initializes d to 0.0012.
Initializes ld to 2.0𝑒308.
Initializes hex to 21 (2.625 ⋅ 23 = 21 in decimal).

https://en.cppreference.com/w/c/language/floating_constant

29/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/floating_constant

Character Types and Symbols

char Equivalent either to signed char or unsigned char, usually 8-bit ASCII value.
wchar_t Usually unsigned 16-bit or 32-bit value.
char16_t Usually unsigned 16-bit value, representing a UTF-16 character.
char32_t Usually unsigned 32-bit value, representing a UTF-32 character.

Examples:

char c = 'a';

char octal = '\141';

char hex = '\x61';

char16_t c16 = u'β';

char32_t c32 = U'\u0387';

wchar_t wc = L'β';

Initializes the variable c to the symbol a (97 decimal).
Initializes octal to the symbol a (141 octal).
Initializes hex to the symbol a (61 hexadecimal).
Initializes c16 to the symbol β (UTF-16 prefix, little beta).
Initializes c32 to β (UTF-32 prefix, little beta).
Initializes wc to β (wide-char prefix, little beta).

https://en.cppreference.com/w/c/language/character_constant

30/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/character_constant

Character Escape Sequences

Escape
Sequence Description ASCII

Escape
Sequence Description ASCII

\f Form feed 12 \' Single quote 39
\n Line feed 10 \" Double quote 34
\r Carriage return 13 \? Question mark 63
\t Horizontal tab 9 \\ Backslash 92
\v Vertical tab 11 \a Audible bell 7
\b Backspace 8
\n n an octal number n \uh h 16-bit hex

number
h

\xh h a hex number h \Uh h 32-bit hex
number

h

https://en.cppreference.com/w/c/language/escape
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/ASCII31/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/escape
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/ASCII

String Literals

A sequence of character symbols stored as an array is a string:

char hello[] = "Hello World";

char uft8[] = u8"Greek beta: β";

char16_t utf16[] = u"Beta: \u0387";

char32_t utf32[] = U"German S: ẞ";

wchar_t wide[] = L"German S: \u1E9E";

Initializes the variable hello to the given string.
Initializes utf8 to the string using UTF-8 encoding.
Initializes utf16 to the string using UTF-16 encoding.
Initializes utf32 to the string using UTF-32 encoding.
Initializes wide to the string using wide characters.

https://en.cppreference.com/w/c/language/string_literal

32/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/string_literal

Global Declarations and Definitions

33/265 2023 INF107 Part 2 - The C Language

Structure of a C Source File

A C source file consists of …

// Include code from the standard library

#include <stdio.h>

#include <stdlib.h>

int counter = 0;

void stepCounter();

int getCounter();

int main(int argc, char *argv[])

{

// some code here

}

}

⎫}}}
⎬}}}⎭

Include header files to import code from libraries
(we’ll get back to libraries in more detail later)

Global declarations of functions, variables, and custom
types, as well as function definitions.

We call such a C source file a translation unit.

34/265 2023 INF107 Part 2 - The C Language

Global Declarations

Introduce a new identifier in the C program:

An identifier is a name with a specific meaning in the program
• Identifiers are sequence of character symbols (letters, underscore, digits, …).
• Identifiers cannot start with a digit.
• Identifiers are case sensitive.

Specifies what the identifier means:
• It may refer to a variable, function, or type.
• It may be associated with additional properties.

https://en.cppreference.com/w/c/language/identifier

35/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/identifier

Global Declarations

Global declarations consist of three parts:
<Storage class and Qualifiers> <Type> <Declarators> ';'

Storage class and qualifiers may appear in any order:

• Storage class: For this class: static or extern.
• Qualifier: For this class: const.

Type:
Any of the basic types, covered so far, or a custom type (yet to come).

Declarators:
One or more declarators separated by a comma (,), such as:

• Identifier of a variable, optionally followed by an initializer.
• Identifier of an array with a size in brackets ([]), optionally followed by an initializer.
• identifier of a function with a parameter list in braces (()).

https://en.cppreference.com/w/c/language/declarations

36/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/declarations

Examples: Global Variable Declarations

int counter = 0;

const short constant = 27;

extern unsigned elsewhere;

static char private = 'p';

int v1, v2, v3;

char message[] = "Hello World";

static short data[100];

int initialized[3] = {0, 1, 2};

Declare the variable counter (with initializer).
Declare constant as const, i.e., its value is not supposed
to change during execution.
Declare elsewhere with storage class extern.
Declare private with storage class static.
Declare v1, v2, and v3 all at once.
Declare message as an array of characters (size derived).
Declare data as an array of 100 short values, stored
consecutively in memory.
Declare initialized as an array of 3 int values,
initialized to 0, 1, and 2 respectively.

37/265 2023 INF107 Part 2 - The C Language

Examples: Global Function Declarations

void foo(void);

void anotherFoo();

int bar(int);

int anotherBar(int a);

long constantArg(const char);

const long constantReturn(void);

extern char elsewhere(int, int b);

static void private(int a, int b);

Declare the function foo, does not return anything and
has no argument.
Declare anotherFoo similar to previous line.
Declare bar, takes and returns an int.
Declare anotherBar similar to previous line.
Declare constantArg, returns a long int value and
takes argument with qualifier const.
Declare constantReturn, returns a value with
qualifier const and has no arguments.
Declare elsewhere with storage class extern and two
arguments (one without name/identifier).
Declare private with storage class static, does not
return anything and takes two arguments.

38/265 2023 INF107 Part 2 - The C Language

Storage Duration and Linkage

Storage Duration:
Global identifiers are accessible during the entire execution of the program.

Linkage:
Indicates the visibility of the function/variable.

• Internal Linkage:
The function/variable is visible only within the current translation unit.

• External Linkage:
The function/variable is visible also from other translation units (aka. other C source files).

https://en.cppreference.com/w/c/language/storage_duration

39/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/storage_duration

Storage Classes

By default global function/variables have external linkage.
Impact of specifying the storage class for a declaration:

• Using static:
Changes linkage to be internal.

• Using extern:
Linkage becomes external, the compiler simply assumes that the function/variable exists.

– The compiler does not reserve memory space for the code/data of the functions/variable.
– The compiler does not assign a memory address in the current translation unit.
– Variables have to be redeclared without extern in another translation unit.
– Functions have to be defined without extern in another translation unit.

40/265 2023 INF107 Part 2 - The C Language

Defining Functions

Function definitions consists of four parts:
<Storage class and Qualifier> <Type> <Declarator> '{' <Body> '}'

Resembles a function declaration:

Storage class and Qualifiers:
Same as before, i.e., static/extern or const respectively.
Type:
Type of the value returned by the function.
Declarator:
The identifier and parameters of the function (same as for declarations).
Body:
The code of the function enclosed in braces.

https://en.cppreference.com/w/c/language/function_definition

41/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/function_definition

Function Body

The function body consists of a sequence of statements and/or declarations:

if or if -else statement.
switch statement.
while or do-while loop.
for loop.
return statement.
An expressions can also be a statement (e.g., 3 + 4;).
Compound statement:
Sequence of statements enclosed in curly braces ({ and }).

https://en.cppreference.com/w/c/language/functions
https://en.cppreference.com/w/c/language/statements

42/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/functions
https://en.cppreference.com/w/c/language/statements

Compound Statements and Scopes

Identifiers introduced by declarations are visible depending on their scope:

File scope:
The scope of the translation unit for global functions/variables.

Function scope:
Every function defines a new scope.

Block scope:
Every compound statement ({ and }) defines a new scope.

Scopes are nested:

• The function scope contains the file scope.
• A block scope contains its surrounding function or block scope.
• …

https://en.cppreference.com/w/c/language/scope

43/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/scope

Declarations within Functions

All kinds of declarations are allowed within functions:

The scope of these declarations is the currently open scope
(either the function scope or the last opened block scope)
Identifiers are only visible within the current scope or its nested scopes.
Identifiers in nested scopes may hide identifiers from surrounding scopes.

44/265 2023 INF107 Part 2 - The C Language

Storage Duration and Linkage (revised)

Storage Duration:
Defines the lifetime during which a function/variable can be used:

• Static duration:
Identifiers are accessible during the entire execution of the program.

• Automatic duration:
Identifiers are accessible only when the enclosing scope is executed.

Linkage:
Indicates the visibility of the function/variable.

• No Linkage:
The variable is visible only in its enclosing scope.

• Internal Linkage:
The function/variable is visible only within the current translation unit.

• External Linkage:
The function/variable is visible also from other translation units (aka. other C source files).

https://en.cppreference.com/w/c/language/storage_duration

45/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/storage_duration

Storage Classes (revised)

By default global function/variables have external linkage and static storage duration.

By default local variables have no linkage and automatic storage duration.

Impact of specifying the storage class for a declaration:

• Using static:
– Changes linkage to be internal for global functions/variables.
– Changes storage duration to be static for local variables.

• Using extern:
Linkage becomes external, the compiler simply assumes that the function/variable exists.

– The compiler does not reserve memory space for the code/data of the functions/variable.
– The compiler does not assign a memory address in the current translation unit.
– Variables have to be redeclared without extern in another translation unit.
– Functions have to be defined without extern in another translation unit.

46/265 2023 INF107 Part 2 - The C Language

Example: Declarations and Scopes

// File scope: message

const char message[] = "Hello World";

// File scope: message and main

int main(int argc, char *argv[])

{

// Function scope: argc, argv, and data

int data = 0;

{

// Block scope: message (hides message from file scope)

static const char message[] = "Me First";

printf("%s\n", message);

}

printf("%s\n", message);

return EXIT_SUCCESS;

}

47/265 2023 INF107 Part 2 - The C Language

Check Yourself!

1
2 const char message[] = "Hello World";

3
4 int main(int argc, char *argv[])

5 {

6 int data = 0;

7 {

8 static const char message[] = "Me First";

9 printf("%s\n", message);

10 }

11 printf("%s\n", message);

12 return EXIT_SUCCESS;

13 }

1. What is the linkage/storage duration of the variable message from line 2?
2. What is the linkage/storage duration of the variable message from line 8?
3. What is the linkage/storage duration of the variable data from line 6?
4. What is the output of compiling this source code and running the resulting executable file?

48/265 2023 INF107 Part 2 - The C Language

Answers

1. The first message variable is defined at file scope, with external linkage and static storage
duration.

2. The second message variable is defined at block scope, with no linkage and static storage
duration.

3. The data variable is defined at function scope. It has no linkage and automatic storage duration.
4. The output of compiling and running the code is:

tp-5b07-26:~/tmp> ls

hello-world.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g hello-world.c -o hello-world

tp-5b07-26:~/tmp> ls

hello-world hello-world.c

tp-5b07-26:~/tmp> ./hello-world

Me First

Hello World

49/265 2023 INF107 Part 2 - The C Language

Expressions (Quick)

50/265 2023 INF107 Part 2 - The C Language

Expressions

Compute a single value from:

Constants
Same notations as seen before when we introduced types.

Variable values
Referenced by the variable’s identifier.

Operators
Respecting precedence and associativity.

Values returned by a function
The function is called (or invoked) and returns a value.

Example: 3 + 4 * a

https://en.cppreference.com/w/c/language/expressions
https://en.cppreference.com/w/c/language/operator_precedence

51/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/expressions
https://en.cppreference.com/w/c/language/operator_precedence

Operators and Precedence (1)

Precedence Operator Description Associativity

1
++ -- Postfix increment/decrement Left
[] Array subscripting Left
() Function call Left

2

++ -- Prefix increment/decrement Right

+ - Unary plus/minus Right
! Logical NOT Right
~ Bitwise NOT Right

3 * / %

Multiplication Left
Division Left
Remainder Left

4 + -
Addition Left
Subtraction Left

5 << >>
Bitwise shift left Left
Bitwise shift right Left

52/265 2023 INF107 Part 2 - The C Language

Operators and Precedence (2)

Precedence Operator Description Associativity

6 < <= > >=

Less-than

Left
Less-than-equal
Greater-than
Greater-than-equal

7 == !=
Compare for equality

Left
Compare not equal

8 & Logical AND Left
9 ^ Logical XOR Left
10 | Logical OR Left
11 && Short-circuit AND Left
12 || Short-circuit OR Left
13 ? : Conditional Operator Right
14 = Assignment Operator Right

53/265 2023 INF107 Part 2 - The C Language

Operator Precedence and Associativity

Important to understand what an expression does and how to read it:

Associativity:
Defines how expressions are braced for operators with same precedence.

• Left Associative:
a - b + c + d is equal to ((a - b) + c) + d.

• Right Associative:
- ~ -a is equal to (- (~ (- a))).

Precedence:
Defines how expressions are braced for operators with different precedence.
-a + b * c is equal to (-a) + (b * c).

https://en.wikipedia.org/wiki/Operator_associativity

54/265 2023 INF107 Part 2 - The C Language

https://en.wikipedia.org/wiki/Operator_associativity

Operator Semantics

Semantics indicates what an operator does:

Most operators have obvious semantics …
• Unary minus (-a) negates a number.
• Binary plus (a + b) computes the sum of two numbers.
• Binary multiplication (a * b) computes the product of two numbers.
• …

We won’t explain each operator in detail, but you can consult the documentation:
https://en.cppreference.com/w/c/language/operator_arithmetic
https://en.cppreference.com/w/c/language/operator_logical
https://en.cppreference.com/w/c/language/operator_comparison
https://en.cppreference.com/w/c/language/operator_assignment

55/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_arithmetic
https://en.cppreference.com/w/c/language/operator_logical
https://en.cppreference.com/w/c/language/operator_comparison
https://en.cppreference.com/w/c/language/operator_assignment

Check Yourself!

Rewrite the following expressions with the correct bracing:

1. a + b + c

2. !a * b + c

3. a + ++b + c

4. !a++ << ++b + c

56/265 2023 INF107 Part 2 - The C Language

Answers

1. a + b + c is the same as (a + b) + c.
2. !a * b + c is the same as ((!a) * b) + c.
3. a + ++b + c corresponds to (a + (++b)) + c.
4. !a++ << ++b + c is equivalent to (!(a++)) << ((++b) + c).

57/265 2023 INF107 Part 2 - The C Language

Statements

58/265 2023 INF107 Part 2 - The C Language

Statements: if

Comes in two variants:
(1) 'if' '(' <Cond> ')' <Sub-statement-true>

(2) 'if' '(' <Cond> ')' <Sub-statement-true> 'else' <Sub-statement-false>

First evaluates the condition expression (<Cond>).
If result is non-zero the (first) sub-statement is executed (<Sub-statement-true>).
Otherwise:

• For the first variant:
Execute the statement following the if.

• For the second variant:
Execute the sub-statement (<Sub-statement-false>).

Example:

if (a + b < c) c = a + b;

else {

c = b / 2;

}

https://en.cppreference.com/w/c/language/if
59/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/if

Statements: switch (1)

A switch statement conditionally executes a case:
'switch' '(' <Cond> ')' '{' <Cases> '}'

Two possible formats for a case:
(1) 'case' <Const-expr> ':' <Sub-statement>

(2) 'default' ':' <Sub-statement>

Evaluates the condition (<Cond>).
Execution continues with the case whose value (<Const-expr>) matches the result.

• <Const-expr> has to be constant and is evaluated at compile-time.
• The values of the different cases have to be unique.

https://en.cppreference.com/w/c/language/switch
https://en.cppreference.com/w/c/language/constant_expression

60/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/switch
https://en.cppreference.com/w/c/language/constant_expression

Statements: switch (2)

If none of the case values matches:
• Execution continues with the default case, if present.
• Otherwise, execution continues with the statement following the switch.
• Only a single default case is allowed.

The cases are considered as a sequence of statements:
• When the execution of the selected case finishes, execution simply continues in the next case.
• One has to explicitly prevent this using a break statement.

https://en.cppreference.com/w/c/language/switch

61/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/switch

Example: switch

1 int counter = 0;

2 switch (cond) {

3 case 4: counter = counter + 1;

4 case 3: counter = counter + 1;

5 case 2: counter = counter + 1;

6 break;

7 case 1: break;

8 default: counter = 1000;

9 }

10 counter = counter * 2;

Execution depends on the value of cond (assume type int):

Value of cond Lines executed Final value of counter

1 1, 2, 7, 10 0
2 1, 2, 5-6, 10 2
3 1, 2, 4-6, 10 4
4 ??? ???
5 ??? ???

62/265 2023 INF107 Part 2 - The C Language

Statements: while Loop

In a while loop the sub-statement is executed repeatedly as long as the condition evaluates to true:
'while' '(' <Cond> ')' <Sub-statement>

The condition expression (<Cond>) is evaluated.
• If the result is non-zero the sub-statement is executed.

– Subsequently the condition expression is reevaluated.
– And so on and so forth …

• If the result is zero the statement following the while is executed.
Example:

while (counter > 5)

{

counter = counter - 1;

}

https://en.cppreference.com/w/c/language/while

63/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/while

Statements: do Loop

A do loop is a similar loop construct:
'do' <Sub-statement> 'while' '(' <Cond> ')'

The sub-statement is executed first.
Then the condition expression (<Cond>) is evaluated.

• If the result is non-zero the sub-statement is executed again.
– Subsequently the condition expression is reevaluated.
– And so on and so forth.

• If the result is zero the following statement is executed.
Example:

do

{

counter = counter - 1;

} while (counter > 5)

https://en.cppreference.com/w/c/language/do

64/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/do

Statements: for Loop (1)

Finally, for loops are just special while loops:
'for' '(' <Init> ';' <Cond> ';' <Iteration> ')' <Sub-statement>

First evaluates the init expression (<Init>) once.
Then the condition expression (<Cond>) is evaluated.

• If the result is non-zero the sub-statement is executed.
– Next the iteration expression (<Iteration>) is evaluated.
– Subsequently the condition expression is reevaluated.
– And so on and so forth …

• If the result is zero the following statement is executed.

https://en.cppreference.com/w/c/language/for

65/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/for

Statements: for Loop (2)

Finally, for loops are just special while loops:
'for' '(' <Init> ';' <Cond> ';' <Iteration> ')' <Sub-statement>

… is (more or less) equivalent to the following while loop:
<Init> ';'

'while' '(' <Cond> ')'

'{'

<Sub-statement>

<Iteration> ';'

'}'

66/265 2023 INF107 Part 2 - The C Language

Statements: Jumping in Loops

One may exit a loop or skip to the next iteration using jump statements:

break:
• A break statement can also be used in loops (recall its use for the switch statement).
• It exits the loop, execution continues with the following statement after the loop.

continue:
• Skips the remaining statements in the loop.
• Execution continues with the evaluation of the condition in a while or do loop.
• Execution continues with the evaluation of the iteration expression in a for loop.

https://en.cppreference.com/w/c/language/break
https://en.cppreference.com/w/c/language/continue

67/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/break
https://en.cppreference.com/w/c/language/continue

Statements: return

In order to leave a function one can use the return statement:

If the return type of the function is void:
• It suffices to simply write return; without a return value.
• Execution continues after the call to the function.
• Reaching the end of such a function without an explicit return is equivalent to a return.

If the return type of the function is not void:
• A return value has to be supplied: return <Expression> ;.
• Execution continues after the call to the function.
• Reaching the end of such a function without an explicit return is undefined behavior.

https://en.cppreference.com/w/c/language/return

68/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/return

A First Algorithm: Division

#include <stdio.h>

#include <stdlib.h>

unsigned int division(unsigned int dividend, unsigned int divisor) {

unsigned int result = 0;

for(unsigned int rest = dividend; rest >= divisor; result++)

rest = rest - divisor;

return result;

}

const char message[] = "Hello World";

short data = 25;

int division_result;

int main(int argc, char *argv[]) {

division_result = division(data, 7) + 2;

printf("%s\n", message);

printf("%d\n", division_result);

return EXIT_SUCCESS;

}

Content of division.c.

69/265 2023 INF107 Part 2 - The C Language

A First Algorithm: Executing the Division

To run the program we have to compile it first and then execute it:
tp-5b07-26:~/tmp> ls

division.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g division.c -o division

tp-5b07-26:~/tmp> ls

division division.c

tp-5b07-26:~/tmp> ./division

Hello World

5

70/265 2023 INF107 Part 2 - The C Language

The main Function

Is the first function to be executed of a program.

Arguments:

• argc: (always type int)
The number of arguments provided to the program on the command line.

• argv:
Array of strings, one string for each command-line argument.

Return Value: (always type int)
Exit status of the program, EXIT_FAILURE/EXIT_SUCCESS on error/success.

Example: ./division one 2 results in
argc: 3
argv[0]: "./division"
argv[1]: "one"
argv[2]: "2"

71/265 2023 INF107 Part 2 - The C Language

The Standard Library

72/265 2023 INF107 Part 2 - The C Language

The Standard Library

The standard library provides elementary functions needed to write programs:

For instance:
• Math library.

https://en.cppreference.com/w/c/numeric
• Time and date library.

https://en.cppreference.com/w/c/chrono
• File, input, and output library.

https://en.cppreference.com/w/c/io
• Strings library.

https://en.cppreference.com/w/c/string
A complete list of library files:
https://en.cppreference.com/w/c/header

73/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/numeric
https://en.cppreference.com/w/c/chrono
https://en.cppreference.com/w/c/io
https://en.cppreference.com/w/c/string
https://en.cppreference.com/w/c/header

Using Library Functionality

A header file needs to be included to use library functions.

A header file is just a normal C file. By convention:

• It only contains global declarations.
• All variables are declared as external, i.e., always with extern.
• Functions are not defined only declared (with or without extern).

The compiler processes all declarations as if they were written in the C file.

The compiler automatically finds function definitions.
(we’ll get back to this later)

Example:
#include <stdio.h> - Include declarations of file, input, and output library.

74/265 2023 INF107 Part 2 - The C Language

Example: Header File

Here is an excerpt from the header file math.h:
<snip>

extern double acos (double __x);

extern double asin (double __x);

extern double atan (double __x);

extern double atan2 (double __y, double __x);

<snip>

extern float fminf (float __x, float __y);

extern double fmin (double __x, double __y);

extern long double fminl (long double __x, long double __y);

<snip>

75/265 2023 INF107 Part 2 - The C Language

IO Library: Formatted Output (1)

The printf function allows to display formatted information:

Allows to print strings, characters, all basic types on the screen.
And much more …
Here is its declaration:
int printf(const char format[], ...);

• It takes a string as parameter (format).
• The dots (...) indicate that any number of additional parameters are accepted.

– Such functions are called variadic, we won’t cover them more than that.
– Integer promotion is applied for these function arguments.
– float values are promoted to double for these function arguments.

• format specifies how to display the other parameter values.
Example: printf("A number: %d\n", 5)

https://en.cppreference.com/w/c/io/fprintf

76/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fprintf

IO Library: Formatted Output (2)

The format parameter is a special string:

Regular characters are simply displayed on the screen.

The % character has special meaning:

• It indicates that the value of another parameter should be displayed.
• The following characters indicate how the value should be displayed.

A quick summary for now (more elaborate explanation next time):

%c Displays a character symbol.
%d Displays a signed integer value (types _Bool, char, int, or short) as decimal.
%u Displays a unsigned integer value (unsigned _Bool, char, int, or short) as decimal.
%x Displays an integer value (signed or unsigned _Bool, char, int, or short) as hexadecimal.
%f Displays an floating-point number (float or double) as decimal.
%e Displays an floating-point number (float or double) in exponent notation.
%s Displays all the characters of a string.

https://en.cppreference.com/w/c/io/fprintf

77/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fprintf

Example: Formatted Output (1)
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char c1 = 'a', c2 = 97;

unsigned short s = 540;

int i = 0xfbfb;

float f = i * 1.133e5;

static const char string[] = "Some string\nwith a line break.";

printf("Character symbols: %c and %c are the same\n", c1, c2);

printf("Characters as numbers: %d and 0x%x are the same\n", c1, c2);

printf("Integer numbers (decimal) : %u and %d\n", s, i);

printf("Integer numbers (hex): 0x%x and 0x%X\n", s, i);

printf("Floating-point numbers: %f and %e\n", f, f);

printf("String: %s\n", string);

printf("Argument: %s\n", argv[0]);

return EXIT_SUCCESS;

}

Content of print.c.
78/265 2023 INF107 Part 2 - The C Language

Example: Formatted Output (2)

tp-5b07-26:~/tmp> ls

print.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g print.c -o print

tp-5b07-26:~/tmp> ls

print print.c

tp-5b07-26:~/tmp> ./print

Character symbols: a and a are the same

Characters as numbers: 97 and 0x61 are the same

Integer numbers (decimal) : 540 and 64507

Integer numbers (hex): 0x21c and 0xFBFB

Floating-point numbers: 7308643328.000000 and 7.308643e+09

String: Some string

with a line break.

Argument: ./print

79/265 2023 INF107 Part 2 - The C Language

Check Yourself!

1. What is the purpose of the break statement in a switch?
2. What is the difference between a while and do-while loop?
3. Where does the execution of a C program start?
4. What is the difference between a C header file and a regular C source file?

80/265 2023 INF107 Part 2 - The C Language

Answers

1. The switch statement allows to distinguish different cases, depending on the value of its
condition expression. The cases within the switch are considered to be a sequence of
statements. So, execution may simply continue with the next case. Unless a break statement is
used. It exits the switch and continues execution at the statement following it.

2. When reaching (entering) a do-while loop the loop’s body is executed once before the loop
condition is verified. For while loops the loop condition is evaluated first, before potentially
executing the loop’s body.

3. Execution starts with the main function
(almost: some code of the standard library is executed earlier to initialize the memory, e.g., setting
up the stack and heap)

4. A header file only contains declarations with the extern keyword, e.g., it does not contain code of
functions. Regular C files contain at least one declaration without the extern keyword.

81/265 2023 INF107 Part 2 - The C Language

Lab Exercises

Get familiar with the C language and compiler:

Compile and run some existing code.
Use a debugger to inspect running code.

• Division
Write a couple of simple programs:

• Bit-level manipulation of integer values.
(extract sign-bit of a signed integer)

• Sieve of Eratosthenes6

(compute the primes up to 100, print integers on screen)
• Insertion sort

(sort floating-point numbers in an array, print floats on screen)

6https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
82/265 2023 INF107 Part 2 - The C Language

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Lecture 2

83/265 2023 INF107 Part 2 - The C Language

Expressions (Elaborated)

84/265 2023 INF107 Part 2 - The C Language

Implicit Conversion

Which type is used to perform the addition in the following code?
long long int a = 5000ll;

unsigned char b = 7;

double c = a + b;

This code contains several implicit conversions:

Initialization:
The value 7 has type int and is converted to char.
Integer promotion:
The value of b is promoted from unsigned char to int or unsigned int for the addition.
Usual arithmetic conversion:
The addition is performed as a long long int, the value of b is thus again converted.
Assignment:
The result of the addition does not match the type of c, which is thus converted to double.

https://en.cppreference.com/w/c/language/conversion

85/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/conversion

Integer Conversion Rank

All integer types are ranked according to their precision:

Every signed integer type has a unique rank.

Unsigned integer types have the same rank as their signed counterparts.

The rank of char is the same as its signed/unsigned counterparts.

_Bool has the smallest rank.

The rank of a type is larger than that of another type if its precision is larger.

The usual order for signed integer types (by increasing rank):
_Bool, signed char, short, int, long int, long long int

86/265 2023 INF107 Part 2 - The C Language

Integer Promotion

Values of types with a small rank are promoted to the type int or unsigned int:

If int can represent all values of the smaller type it is promoted to int.

Otherwise is is converted to unsigned int.

All operations with small types are thus implicitly performed as int/unsigned int.

Integer promotion is performed:

• For all unary operators and shift operators.
• As part of the usual arithmetic conversion for binary operators (except shifts).
• Under certain conditions: To arguments of function calls.

87/265 2023 INF107 Part 2 - The C Language

Usual Arithmetic Conversion

Is performed for (most) binary operators:

If one operand is a long double, the other operand is converted to long double.
Otherwise, if one operand is a double, the other operand is converted to double.
Otherwise, if one operand is a float, the other operand is converted to float.
Otherwise, integer promotion is performed on both operands.

• If the two types of the operands are the same, no further conversion is performed.
• Otherwise, the operand whose type has a smaller rank is converted to the one with the larger rank.
• Except if:

– The operand with the smaller rank is unsigned.
– The type with larger rank is signed and cannot represent all values of the smaller unsigned type.
– In this case both values are converted to the unsigned counterpart of the larger type.

88/265 2023 INF107 Part 2 - The C Language

Integer Conversions

When converting from one type to another the value may change:

If the destination type can represent the value, the value remains unchanged.
(except for sign- or zero-extension)

If the destination type cannot represent the value:

• If the destination type is unsigned, the value is truncated.
(unsigned numbers consequently perform modulo arithmetic)

• If the destination type is signed, the result is implementation-defined.
(on the lab machines: the value is truncated)

89/265 2023 INF107 Part 2 - The C Language

C Standard Peculiarities

You have seen that the C standard leaves things open:

The number representation is not fixed by the standard and might not be two’s complement.

The size of integer/floating-point types is not fixed, only minimal guarantees are specified.

The C standard uses the following convention:

• Implementation-Defined Behavior:
The operating system/compiler may chose what is to be done. The chosen behavior has to be
documented and has to be applied consistently.

• Unspecified Behavior:
The behavior is covered by the standard, but may change from one execution to another, i.e., one
cannot rely on the behavior.

• Undefined Behavior:
The behavior is outside of the standard or explicitly defined to be undefined. This is typically neither a
bug in the standard nor an omission, but a deliberate choice by the standard committee.

90/265 2023 INF107 Part 2 - The C Language

Operators: Type Cast

One may also perform type conversions explicitly:
'(' <Type> ')' <Expr>

Explicitly converts the result of the expression to the indicated type.
Special case: '(' 'void' ')' <Expr>

• Discards the computed value.
Example:

float f = .5;

int main(int argv, char *argv[]) {

return (int)f; // Explicit cast.

}

https://en.cppreference.com/w/c/language/cast

91/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/cast

Operators: Array Subscripting

Allows to access individual elements of an array:
<expression> '[' <subscript> ']'

The subscript has to be of integer type.
• Array elements are indexed starting with 0.
• For an array with size 𝑛 the last element has index 𝑛 − 1.
• Subscripts that exceed the array size result in undefined behavior.

Example:

int array[] = {1, 2, 3, 4};

int main(int argv, char *argv[]) {

return array[2]; // Array subscript.

}

https://en.cppreference.com/w/c/language/operator_member_access#Subscript

92/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_member_access#Subscript

Operators: Basic Arithmetic

Basic arithmetic operators are +, - , *, /, and %:

These operators are mostly self explanatory … but may come with surprises:

Overflow:

• Unsigned operations are always performed using modulo arithmetic.
(if the operation would exceed the type’s range, simply to result modulo 2𝑛 is computed)

• Overflow for signed operations is undefined.
(on the Lab machines: the result is truncated)

Integer division is truncated towards 0.

• Division by 0 is undefined.
• Remainders thus always have the same sign as the dividend.
• Example: −11/3 = −3.666667

– The integer division in C (-11/3) yields -3.
– The remainder in C (-11%3) yields -2.

https://en.cppreference.com/w/c/language/operator_arithmetic
93/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_arithmetic

Operators: Bitwise Shift Operators

Shift operators are << and >>:

Move the bit pattern to the left or right by 𝑘 positions

For unsigned integers:
Sets the 𝑘 least-/most-significant bits to 0 for a left/right shift.

For signed integers:
• Sets the 𝑘 least-significant bits to 0 for a left shift.
• Sets the 𝑘 most-significant bits to the initial most-significant bit (sign) for a right shift.

Does not apply the usual arithmetic conversion, but only integer promotion.
The result type is the type of the left operand, after promotion.

The right operand (𝑘) should not exceed the size of the type of the left operand and should not be
negative, or else the result is undefined.

https://en.cppreference.com/w/c/language/operator_arithmetic

94/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_arithmetic

Operators: Comparison Operators

Comparisons (==, !=, <, …) compare the values of the two operands:

The result is 1 when the relation holds, 0 otherwise.

The unary logical NOT operator is equivalent to a test for zero:
!a is equivalent to 0 == a.

https://en.cppreference.com/w/c/language/operator_comparison
https://en.cppreference.com/w/c/language/operator_logical

95/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_comparison
https://en.cppreference.com/w/c/language/operator_logical

Operators: Assignment

Be careful to not confuse the assignment operator (=)
and comparison operator (==)!

<modifieable lvalue> = <expression>

Assigns the result of the expression from the right side to the lvalue on the left side.
So far we have only seen two kinds of lvalues: variables and array subscripts.
The types of the left and right side must either be convertible or compatible:

• Implicit conversion may occur.
• The behavior of the implicit conversion may be implementation-defined.

An assignment may appear in an expression and evaluates to the value of the right side:
a + (b = 2) the assignment evaluates to 2 and thus the expression to a + 2

https://en.cppreference.com/w/c/language/operator_assignment

96/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_assignment

Operators: Assignment Variants

The C language provides compound assignment operators:

These operators are:
*=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=
They are just a shortcut:
a *= b is equivalent to a = a * b

https://en.cppreference.com/w/c/language/operator_assignment

97/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_assignment

Operators: Increment and Decrement

C defines special operators to increment/decrement an lvalue:
(1) a++ (2) a-- (3) ++a (4) --a

The above examples increment/decrement the value of a by 1 respectively.

The first two (1) and (2) are called post-increment/-decrement operators:
• The value of the entire expression is the initial value of a.
• a is incremented/decremented independently.

The next two (3) and (4) are called pre-increment/-decrement operators:
• The value of the entire expression is the new (incremented) value of a.
• a is also incremented/decremented.
• They are the equivalent to a += 1 and a -= 1 respectively.

https://en.cppreference.com/w/c/language/operator_incdec

98/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_incdec

Operators: Function Calls

A function call consists of two elements:
<Expression> '(' <Argument list> ')'

Expression:
For this class: the expression may only be the identifier of the function to be called.

Argument list:
A possibly empty list of expressions separated by a comma (,).

Calling a function may provoke side-effects:

• Values of variables may change (before vs. after the call).
• More generally: memory content may change.
• The function may perform input/output operations.
• …

https://en.cppreference.com/w/c/language/operator_other

99/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_other

Evaluation Order

The evaluation order of the terms in expressions is generally unspecified:

A compiler may chose any order respecting operator precedence and associativity.
• The order may even change for the same expression.
• This is important for operations with side-effects:

– Function calls.
– Increment/decrement operators.
– Assignment operators in expressions.

The standard defines:
• Value computation:

Determining the value of an expression.
• Side-effects:

Modification of a memory location (e.g., variable), input/output, …

https://en.cppreference.com/w/c/language/eval_order

100/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/eval_order

Example: Evaluation Order

How is the following expression evaluated?
f1() + f2() * f3()

Associativity and precedence:
f1() + (f2() * f3())

Value computation:
• Return value of f2() and f3() needed for multiplication.
• Return value of f1() and the multiplication result needed for addition.

Side-effects:
• Order is not specified.
• The call to f3() may be evaluated before/after f1() and/or f2().
• Only guarantee: side-effects of different functions are not interleaved.

101/265 2023 INF107 Part 2 - The C Language

Example: Evaluation Order and Undefined Behavior

The behavior of the following code snippets is undefined:
(1) i++ + i (2) f(i *= 5, i++)

The evaluation order is unspecified (also for function arguments).
Side-effect of incrementing i (i++) in (1):

• Has no order relative to the value computation of i as the second operand.
• The value of the expression is thus undefined.

Side-effects on i in (2):
• Both arguments of the function call modify i.
• There is no ordering of these two side-effects.
• The outcome is thus undefined.

102/265 2023 INF107 Part 2 - The C Language

Operators: Short-Circuit Operators

Operators with a well-defined evaluation order are && and ||:

Perform logical AND/OR on booleans respectively.
The value computation and side-effects of the left operand are evaluated first.
The right operand is only evaluated when:

• The left operand evaluated to a non-zero value for &&.
• The left operand evaluated to zero for ||.
• Otherwise neither value computation nor side-effects are evaluated for the right operand.

Example: 0 && f1()

Never calls f1, so its side-effects are never evaluated too.

https://en.cppreference.com/w/c/language/operator_logical

103/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_logical

Operators: Conditional Operator

The evaluation order of the conditional operator is also defined:
<Cond> '?' <Expr-true> ':' <Expr-false>

First value computation and side-effects for expression <Cond> are performed.
Depending on the result:

• If the result is 0, the right (<Expr-false>) operand is evaluated.
• Otherwise, the left (<Expr-true>) operand is evaluated.
• The respective other operand is not evaluated.

https://en.cppreference.com/w/c/language/operator_other

104/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_other

Check Yourself!

1. What is the difference between (1) i++ and (2) ++i?
2. Give an example with undefined behavior.

Should your code make use of such constructs?
3. Give an example of implementation-defined behavior.

Should your code make use of such constructs?
4. Give an example of unspecified behavior.

Should your code make use of such constructs?
5. What is the difference between f1() && f2() and f1() & f2()?

105/265 2023 INF107 Part 2 - The C Language

Answers (1)

1. Both operators increment the variable i, the difference is the result: (1) the expression evaluates
to the initial value of i; (2) the result is the new (incremented) value of i.

2. i << -3 is undefined due to the negative shift amount. You should avoid any constructs with
undefined behavior in your code.

3. signed char i = 512; contains an implicit conversion from the constant’s type int to
signed char. On the lab machines the possible range of signed char is exceeded, the result
is implementation-defined. It is sometimes difficult to avoid implementation-defined behavior, but
you should avoid implementation specific code if possible.

106/265 2023 INF107 Part 2 - The C Language

Answers (2)

4. For the expression f1() + f2() the evaluation order, notably concerning side-effects, is
unspecified. You should be aware of such behavior and carefully write your code to obtain the
actual behavior that you want, e.g., you may rewrite the code unambiguously using two parts:

(1) int tmp = f1(); (2) tmp + f2();

5. The evaluation order of f1() & f2() is not specified. The calls to f1/f2 my execute in any
order. While for f1() && f2() the evaluation order is specified, f1 is executed first. If its result
is true also f2 is executed, otherwise not.

107/265 2023 INF107 Part 2 - The C Language

A First Algorithm: Division

#include <stdio.h>

#include <stdlib.h>

unsigned int division(unsigned int dividend, unsigned int divisor) {

unsigned int result = 0;

for(unsigned int rest = dividend; rest >= divisor; result++)

rest = rest - divisor;

return result;

}

const char message[] = "Hello World";

short data = 25;

int division_result;

int main(int argc, char *argv[]) {

division_result = division(data, 7) + 2;

printf("%s\n", message);

printf("%d\n", division_result);

return EXIT_SUCCESS;

}

Content of division.c.

108/265 2023 INF107 Part 2 - The C Language

Memory Organization

The usual organization of the processor’s memory:
A part of the memory is reserved for the operating system.
Another part for the machine code of the program.
The rest is for storing data of the program:

• Global data, accessible all the time.
• Stack data, accessible only temporarily.
• Heap data, explicitly managed by the programmer.

Where in memory did the compiler put the code
and data of this first algorithm?

Operating
System

Machine
Code

Global
Data

Heap
Data

Stack Data

Address 0

A
dd

re
ss

es
in

cr
ea

se

109/265 2023 INF107 Part 2 - The C Language

A First Algorithm: Memory Addresses - using nm

tp-5b07-26:~/tmp> ls

division division.c

tp-5b07-26:~/tmp> nm -nS division

<snip>

400547 30 T division

400577 54 T main

<snip>

400678 0c R message

<snip>

402020 02 D data

<snip>

40203c 04 B division_result

<snip>

The nm tool shows all global variables/functions of a program:
The first column shows the address (in hexadecimal)
The second column the size (in hexadecimal)
For the third column:

• T indicates a function containing machine code (aka. text).
• R indicates a variable containing read-only data.
• B indicates a address containing data that is not initialized

(block starting symbol or BSS).
• D indicates a address containing data that is initialized.

The last column shows the identifier of the variable/function.

Recall: Global variables/functions have static storage duration, they are loaded
into memory and initialized at program start.

110/265 2023 INF107 Part 2 - The C Language

A First Algorithm: Memory Addresses using Debugger

111/265 2023 INF107 Part 2 - The C Language

A First Algorithm: Memory Addresses - Summary

What did we find:
Machine code is stored from 0x400547 to 0x4005cb.
Global data is stored from 0x400678 to 0x402040.
Local variables are stored on the stack:

• Stack data is stored from 0x7fffffffd94c to 0x7fffffffd960.
(for function division, which was called from main)

• Stack data is stored from 0x7fffffffd970 to 0x7fffffffd980.
(for function main)

This matches our memory layout from before! Yay!

Operating
System

Machine
Code

Global
Data

Heap
Data

Stack Data

Address 0

A
dd

re
ss

es
in

cr
ea

se

112/265 2023 INF107 Part 2 - The C Language

Automatic Storage Duration and the Stack

The stack allows the compiler to manage temporary data:

The stack indicates a memory region reserved for local data:
• Stack Pointer:

The address where this memory region starts.
• Decrementing/incrementing the stack pointer reserves/frees space on the stack.

The compiler generates code for each function:
• Entry:

– Reserve new space to store temporary data.
– The stack pointer decrements (moves down).

• Exit: Free new space to store temporary data.
– Free the temporary space again.
– The stack pointer increments (moves up).

• This corresponds to the automatic storage duration of C.

113/265 2023 INF107 Part 2 - The C Language

Example: The Stack during Execution (1)

#include <stdio.h>

#include <stdlib.h>

unsigned int division(unsigned int dividend, unsigned int divisor) {

unsigned int result = 0;

for(unsigned int rest = dividend; rest >= divisor; result++)

rest -= divisor;

return result;

}

const char message[] = "Hello World";

short data = 25;

int division_result;

int main(int argc, char *argv[]) {

division_result = division(data, 7) + 2;

printf("%s\n", message);

printf("%d\n", division_result);

return EXIT_SUCCESS;

}

114/265 2023 INF107 Part 2 - The C Language

Example: The Stack during Execution (2)

Stack before entering the function main:
64-bit Value

Stack Address 32-bit Value 32-bit Value Description

7fffffffd9a0 0000000000000000 Unused
7fffffffd9a8 00007fffffffda88 Value of argv
7fffffffd9b0 00000001 00000000 Value of argc

…
7fffffffda88 00007fffffffdf6e Value of argv
7fffffffda90 0000000000000000 Value of argv

…
0x7fffffffdf68 "\0\0\0\0\0\0./" Value of argv
0x7fffffffdf70 "division" Value of argv

…

115/265 2023 INF107 Part 2 - The C Language

Example: The Stack during Execution (3)

Stack after entering the function main:
64-bit Value

Stack Address 32-bit Value 32-bit Value Description

7fffffffd980 00007fffffffda88 Value of argv
7fffffffd988 00000000 00000001 Value of argc
7fffffffd990 00000000004005de Saved register
7fffffffd998 00007ffff7a1229d Return address

7fffffffd9a0 0000000000000000 Unused
7fffffffd9a8 00007fffffffda88 Value of argv
7fffffffd9b0 00000000 00000001 Value of argc

…
7fffffffda88 00007fffffffdf6e Value of argv
7fffffffda90 0000000000000000 Value of argv

…
0x7fffffffdf68 "\0\0\0\0\0\0./" Value of argv
0x7fffffffdf70 "division" Value of argv

…

116/265 2023 INF107 Part 2 - The C Language

Example: The Stack during Execution (4)

Stack after entering the function division:
64-bit Value

Stack Address 32-bit Value 32-bit Value Description

7fffffffd958 00000007 00000019 Values of dividend/divisor
7fffffffd960 0000000000400040 Unused
7fffffffd968 00000000 00000000 Values of result/rest
7fffffffd970 00007fffffffd990 Saved register
7fffffffd978 000000000040059a Return address (main)

7fffffffd980 00007fffffffda88 Value of argv
7fffffffd988 00000000 00000001 Value of argc
7fffffffd990 00000000004005de Saved register
7fffffffd998 00007ffff7a1229d Return address

7fffffffd9a0 0000000000000000 Unused
7fffffffd9a8 00007fffffffda88 Value of argv
7fffffffd9b0 00000000 00000001 Value of argc

…

117/265 2023 INF107 Part 2 - The C Language

Example: The Stack during Execution (5)

Stack before leaving the function division:
64-bit Value

Stack Address 32-bit Value 32-bit Value Description

7fffffffd958 00000007 00000019 Values of dividend/divisor
7fffffffd960 0000000000400040 Unused
7fffffffd968 00000004 00000003 Values of result/rest
7fffffffd970 00007fffffffd990 Saved register
7fffffffd978 000000000040059a Return address (main)

7fffffffd980 00007fffffffda88 Value of argv
7fffffffd988 00000000 00000001 Value of argc
7fffffffd990 00000000004005de Saved register
7fffffffd998 00007ffff7a1229d Return address

7fffffffd9a0 0000000000000000 Unused
7fffffffd9a8 00007fffffffda88 Value of argv
7fffffffd9b0 00000000 00000001 Value of argc

…

118/265 2023 INF107 Part 2 - The C Language

Example: The Stack during Execution (6)

Stack after leaving the function division:
64-bit Value

Stack Address 32-bit Value 32-bit Value Description

7fffffffd980 00007fffffffda88 Value of argv
7fffffffd988 00000000 00000001 Value of argc
7fffffffd990 00000000004005de Saved register
7fffffffd998 00007ffff7a1229d Return address

7fffffffd9a0 0000000000000000 Unused
7fffffffd9a8 00007fffffffda88 Value of argv
7fffffffd9b0 00000000 00000001 Value of argc

…
7fffffffda88 00007fffffffdf6e Value of argv
7fffffffda90 0000000000000000 Value of argv

…
0x7fffffffdf68 "\0\0\0\0\0\0./" Value of argv
0x7fffffffdf70 "division" Value of argv

…

119/265 2023 INF107 Part 2 - The C Language

Compilation, Addresses, and Alignment

The compiler assigns addresses:

In the order of declarations in the code:
• Code/functions to fixed global addresses.
• Global declarations to fixed global addresses.

(Static storage duration)
• Local declarations to relative addresses on the stack.

(Automatic storage duration)
• The address does not change during an object’s lifetime.

Each object has a known size.
Respecting alignment:

• Each type has a minimum alignment 𝑛.
• The addresses of any object (variable) has to be a multiple of 𝑛.

https://en.cppreference.com/w/c/language/object#Alignment

120/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/object#Alignment

Operators: sizeof and _Alignof

C provides operators to determine size and alignment:

Alignment: '_Alignof' '(' <Type> ')'

Works only with types, returns the minimum alignment.
• Alternative alignof :

Just an alternative name, requires #include <stdalign.h>.
Size: 'sizeof' '(' <Type> ')' or 'sizeof' <Expr>

Works with expressions and types.
The type of both operators is size_t.

https://en.cppreference.com/w/c/language/sizeof
https://en.cppreference.com/w/c/language/_Alignof
https://en.cppreference.com/w/c/types/size_t

121/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/sizeof
https://en.cppreference.com/w/c/language/_Alignof
https://en.cppreference.com/w/c/types/size_t

Example: Size and Alignment (1)

#include <stdalign.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

printf("char:\t\talignment:%zd size:%zd\n", _Alignof(char), sizeof(char));

printf("short:\t\talignment:%zd size:%zd\n", _Alignof(short), sizeof(short));

printf("int:\t\talignment:%zd size:%zd\n", _Alignof(int), sizeof(int));

printf("long:\t\talignment:%zd size:%zd\n", _Alignof(long), sizeof(long));

printf("long long:\talignment:%zd size:%zd\n", _Alignof(long long), sizeof(long long));

printf("float:\t\talignment:%zd size:%zd\n", _Alignof(float), sizeof(float));

printf("double:\t\talignment:%zd size:%zd\n", _Alignof(double), sizeof(double));

printf("long double:\talignment:%zd size:%zd\n", _Alignof(long double), sizeof(long double));

return EXIT_SUCCESS;

}

Content of size-alignment.c.

122/265 2023 INF107 Part 2 - The C Language

Example: Size and Alignment (2)

On lab machines (Linux, x86-64) the previous code yields:
tp-5b07-26:~/tmp> ls

size-alignment.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g size-alignment.c -o size-alignment

tp-5b07-26:~/tmp> ls

size-alignment size-alignment.c

tp-5b07-26:~/tmp> size-alignment

char: alignment:1 size:1

short: alignment:2 size:2

int: alignment:4 size:4

long: alignment:8 size:8

long long: alignment:8 size:8

float: alignment:4 size:4

double: alignment:8 size:8

long double: alignment:16 size:16

123/265 2023 INF107 Part 2 - The C Language

Derived Types

124/265 2023 INF107 Part 2 - The C Language

Derived Types

In addition to the basic types, C allows to declare custom types:

Pointer types:
Represent the address of another object.
enum types:
Integer types, used to assign values to symbolic names.
Structure types: (aka. record types)
Regroup multiple data items under a single type.
Union types:
Allow to store values of different types at the same address (not handled here).
Type definitions:
Allow to introduce an alias for a type name.

125/265 2023 INF107 Part 2 - The C Language

Derived Types: Pointers

A pointer contains the address of another object:

Specified as part of a declarator:
Simply add a * before the identifier.
The pointer type indicates the type of the object.
Address format:

• Usually represented as unsigned integers.
• Size may or may not match one of the integer types.
• Format may depend on the object’s type.
• Lab machines: 64-bit unsigned integers.

Example:

int *pointerToInt; // A pointer to an integer object.

const char *message = "Hello World"; // A pointer to a string.

extern float *floatData(int index); // Function returning a pointer.

int *anotherPointer = pointerToInt; // A pointer initialized from another pointer.

https://en.cppreference.com/w/c/language/pointer

126/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/pointer

Operators: Dereferencing (*)

The object of a pointer can be accessed by dereferencing:
'*' <Pointer-Expression>

Evaluate <Pointer-Expression>, i.e., compute an address.
Then accesses the memory at that address (for reading or writing).
Example:

int a, *b, c; // Declare two integer variables, a pointer, ...

extern float *floatData(int index); // ... and a function.

<snip>

int sum = a + *b; // Read memory from address stored in b.

*b = c; // Write memory at address stored in b.

*floatData(5) = *b; // Write/read memory using pointers.

https://en.cppreference.com/w/c/language/operator_member_access#Dereference

127/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_member_access#Dereference

Operators: Address Of (&)

One can obtain the address of any object using the unary & operator:
'&' <Expression>

Works with <Expression> being:
• A Variable (and also functions).
• An array access.
• A dereferenced pointer.

The expression’s type is a pointer type, pointing to the object’s type:

int a;

const char message[] = "Hello World"; // Declare some variables/functions.

extern float *floatData(int index);

<snip>

int *pointerToInt = &a; // Initialize the pointer with the address of a.

const char* pointerToChar = &message[2]; // Initialize with address of 3rd element.

int *pointerToInt2 = &*floatData(5); // Initialize from dereferencing a pointer.

https://en.cppreference.com/w/c/language/operator_member_access#Address_of

128/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_member_access#Address_of

NULL Pointers (1)

It is sometimes useful to indicate that a pointer holds no valid address:

This is known as a null pointer, written as NULL

int *pointerToInt = NULL;

const char *message = NULL;

NULL is defined in several headers of the standard library:
• #include <stddef.h> works, for instance.
• #include <stdlib.h> works too.

Caution:
• The actual value of NULL is implementation-defined.
• Pointers are not automatically initialized to NULL.

int *pointerToInt;

int a = *pointerToInt; // May or may not be NULL.

https://en.cppreference.com/w/c/types/NULL

129/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/types/NULL

NULL Pointers (2)

It is possible to test for null pointers:

Either by explicitly comparing with NULL:

// Is the same as on the right.

int *pointerToInt;

<snip>

if (pointerToInt == NULL) {

<snip>

}

// Is the same as on the left.

int *pointerToInt;

<snip>

if (!pointerToInt) {

<snip>

}

Or using the logical/conditional operators:

// Default value instead of dereferencing NULL.

int *pointerToInt;

<snip>

int a = pointerToInt ? *pointerToInt : 5;

// False instead of dereferencing NULL.

int *pointerToInt;

<snip>

bool b = pointerToInt && *pointerToInt == 5;

130/265 2023 INF107 Part 2 - The C Language

Pointers and Casts

Pointers can be converted to/from other types:

Pointer types can be converted from/to another pointer type:
• If the alignment is respected, otherwise the result is undefined.
• Including void*, a generic pointer.
• Including NULL.

Pointer types can be converted from/to integer types:
• Sometimes useful for systems programming …
• Sometimes happens due to implicit conversion.
• This may be very dangerous.

Example:

extern void *newPointer();

int *pointerToInt = (int*)newPointer(); // Cast from void*.

float *pointerToFloat = (float*)newPointer(); // Cast from void*.

https://en.cppreference.com/w/c/language/cast

131/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/cast

Arrays and Pointers

Arrays and pointers in C are closely related:

An array can be seen as a special object, consisting of:
• The actual data, i.e., the array elements placed sequentially in memory.
• A pointer to the data.

Pointers can be used where arrays are expected, and vice versa. But, …
• Not all array operations are allowed on pointers though.

(assigning an array initializer)
• Not all pointer operations are allowed on arrays though.

(for example: assigning a new address)

132/265 2023 INF107 Part 2 - The C Language

Example: Arrays and Pointers (1)

#include <stdio.h>

#include <stdlib.h>

int expectArray(int data[5]) {

return data[3];

}

int data[] = {1, 2, 3, 4, 5};

int *pointer = &data[0];

int main(int argc, char *argv[]) {

expectArray(data); // Pass an array as argument (as expected).

expectArray(pointer); // Pass a pointer as an argument.

printf("%d\n", data[2]); // Array subscript on an array.

printf("%d\n", pointer[2]); // Array subscript on pointer

return EXIT_SUCCESS;

}

133/265 2023 INF107 Part 2 - The C Language

Example: Arrays and Pointers (2)

#include <stdio.h>

#include <stdlib.h>

int expectPointer(int *data) {

return data[3];

}

int data[] = {1, 2, 3, 4, 5};

int *pointer = &data[0];

int main(int argc, char **argv) { // Main can also be declared this way.

expectPointer(data); // Pass an array as argument.

expectPointer(pointer); // Pass a pointer as an argument (as expected).

return EXIT_SUCCESS;

}

134/265 2023 INF107 Part 2 - The C Language

Arrays as Pointers: Differences (1)

#include <stdio.h>

#include <stdlib.h>

const char messageArray[] = "Hello World"; // These are ...

const char *messagePointer = "Hello World"; // ... essentially the same.

const short *pointer = {1, 2, 3, 4, 5}; // Does not work.

int main(int argc, char *argv[])

{

const char localArray[] = "Hello World"; // These are ...

const char *localPointer = "Hello World"; // ... essentially the same.

messagePointer = messageArray; // Works.

messageArray = messagePointer; // Does not work.

localPointer = localArray; // Works.

localArray = localPointer; // Does not work.

return EXIT_SUCCESS;

}

135/265 2023 INF107 Part 2 - The C Language

Arrays as Pointers: Differences (2)

The compiler produces a couple of error messages:
tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g pointer2.c -o pointer2

pointer2.c:7:26: warning: initialization makes pointer from integer without a cast [-Wint-conversion]

const short *pointer = {1, 2, 3, 4, 5}; // Does not work.

^

<snip>

pointer2.c:7:38: note: (near initialization for ‘pointer’)

pointer2.c: In function ‘main’:

pointer2.c:15:16: error: assignment to expression with array type

messageArray = messagePointer; // Does not work.

^

pointer2.c:18:14: error: assignment to expression with array type

localArray = localPointer; // Does not work.

^

136/265 2023 INF107 Part 2 - The C Language

Arrays and Strings

Strings are simply arrays:

Characters placed in memory one after the other.
The length of the string:

• Is not stored explicitly (as in Java/Python).
• Instead the end is indicated by a special null character ('\0').

Example:

const char messagePointer[] = "Hello World"; // <-- Implicit '\0' at end

results in the following memory content:
'H' 'e' 'l' 'l' 'o' ' ' 'W' 'o' 'r' 'l' 'd' '\0'

or in decimal:
72 101 108 108 111 32 87 111 114 108 100 0

137/265 2023 INF107 Part 2 - The C Language

Example: Arrays, Pointers, and Strings – argv

Stack before entering the function main of our division example:
64-bit Value

Stack Address 32-bit Value 32-bit Value Description

7fffffffd9a0 0000000000000000 Unused
7fffffffd9a8 00007fffffffda88 Value of argv (pointer)
7fffffffd9b0 00000001 00000000 Value of argc

…
7fffffffda88 00007fffffffdf6e Value of argv[0] (string/pointer)
7fffffffda90 0000000000000000 Value of argv[1] (null pointer)

…
0x7fffffffdf68 "\0\0\0\0\0\0./" Value of argv[0]
0x7fffffffdf70 "division" Value of argv[0]
0x7fffffffdf78 "\0\0\0\0\0\0\0\0" Value of argv[0]

…

138/265 2023 INF107 Part 2 - The C Language

Derived Types: Structures

Allow to regroup several data items into one type:
'struct' <identifier> '{' <Struct-Declarators> '}'

The structure consists of a sequence of declarators:
• Each declaring a structure member.
• Only declarations of data items are allowed (no types, no functions).

Members are placed sequentially in memory, respecting member alignment:
• There might be unused bytes inside a structure, called padding.
• The size of the structure might be larger than the sum of the member sizes.
• The alignment of the structure is the maximum alignment among members.

https://en.cppreference.com/w/c/language/struct

139/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/struct

Example: Structure Types (1)
#include <stdalign.h>

#include <stdio.h>

#include <stdlib.h>

struct char_short_int {

char c; // Alignment: 1 Size: 1 + three bytes of padding.

int i1; // Alignment: 4 Size: 4

short s; // Alignment: 2 Size: 2 + two bytes of padding.

int i2; // Alignment: 4 Size: 4

};

struct int_short_char {

int i1, i2; // Alignment: 4 Size: 4+4

short s; // Alignment: 2 Size: 2

char c; // Alignment: 1 Size: 1

};

int main(int argc, char *argv[]) {

printf("Size:%zd vs. %zd\n", sizeof(struct char_short_int), sizeof(struct int_short_char));

printf("Align.:%zd vs %zd\n", alignof(struct char_short_int), alignof(struct int_short_char));

return EXIT_SUCCESS;

}

Content of struct.c.
140/265 2023 INF107 Part 2 - The C Language

Example: Structure Types (2)

tp-5b07-26:~/tmp> ls

struct.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g struct.c -o struct

tp-5b07-26:~/tmp> ls

struct struct.c

tp-5b07-26:~/tmp> ./struct

Size:16 vs. 12

Align.:4 vs 4

141/265 2023 INF107 Part 2 - The C Language

Structure Tag vs. Type Name

The identifier of a structure is called tag:

The tag is not a type name.
• Instead one has to add struct before the tag.
• Example:

struct tagName { int ID; char name[20]; int size; }; // Struct with tag "tagName"

struct tagName object = {0, "Florian", 182}; // Variable with type "struct tagName".

https://en.cppreference.com/w/c/language/struct_initialization

But, one may define short names (see typedef, coming up soon).

142/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/struct_initialization

Operators: Structure Member Access

The members of a structure can be accessed using the . operator:
<Struct-Expression> '.' <Identifier>

Allows to read/write members using their identifier

struct tagName { int ID; char name[20]; int size; };

struct tagName object = {0, "Florian", 182};

struct tagName anotherObject;

anotherObject.ID = object.ID + 1; // Read/write members.

anotherObject.name[0] = 'E';

anotherObject.size = 183;

https://en.cppreference.com/w/c/language/operator_member_access#Member_access

143/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_member_access#Member_access

Operators: Dereferencing and Member Access

C provides a shortcut to dereference and access structure members:
<Pointer-Expression> '->' <Identifier>

Dereference the pointer expression and access a member.
(works only when pointing to a structure obviously)
Example:

struct tagName { int ID; char name[20]; int size; };

struct tagName object = {0, "Florian", 182};

struct tagName *pointerToObject = &object;

pointerToObject->ID = 6; // Set member after dereferencing.

pointerToObject->size++; // Increment member after dereferencing.

This is just a shortcut for:

(*pointerToObject).ID = 6; // Set member after dereferencing.

(*pointerToObject).size++; // Increment member after dereferencing.

https://en.cppreference.com/w/c/language/operator_member_access%Member_access_through_pointer

144/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/operator_member_access%Member_access_through_pointer

Derived Types: enum Types

Allow to regroup symbolic names and assign integer values to them:
'enum' <Identifier> '{' <Enumerators> '}'

Enumerators are separated by commas (,) and come in two variants:
(1) <Identifier>
(2) <Identifier> '=' <Constant-Expression>

Each enumerator introduces a new identifier.
• The identifier has to be unique.
• The identifier is associated with an integer value.
• If no value is provided:

– The value becomes the value of the previous enumerator plus 1.
– Or 0, if it is the first enumerator.

https://en.cppreference.com/w/c/language/enum

145/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/enum

Example: enum Types

enum states {IDLE, RUNNING=2, STOPPED, DONE};

void onState(enum states s)

{

switch (s)

{

case IDLE: // IDLE is the same as 0

// Do something.

break;

case RUNNING: // ... the same as 2

// Do something.

break;

case STOPPED: // ... the same as 3

// Do something.

break;

case DONE: // ... the same as 4

// Do something.

break;

}

}

146/265 2023 INF107 Part 2 - The C Language

Derived Types: Type Definitions

C allows to introduce shortcuts for type names:
'typedef' <Type> <Identifier>

Introduces a new identifier as an alias of the given type:
• The two types are synonyms.
• Values of the respective other type are admissible.

Examples:

struct tagName { int ID; char name[20]; int size; };

typedef struct tagName structureType; // structureType is structure.

typedef unsigned char ageType; // Age is an unsigned char.

ageType age = 5; // Same as an integer variable.

structureType object = {0, "Florian", 182}; // A structure.

https://en.cppreference.com/w/c/language/typedef

147/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/typedef

Example: Simple Linked List (1)
#include <stdio.h>

#include <stdlib.h>

typedef struct node node_t; // Declare shortcut.

struct node {

void *data;

node_t *next; // Use shortcut.

};

int main(int argc, char *argv[]) {

static int data[] = {4, 067, 0xfffffff9};

node_t node2 = {&data[2], NULL}; // Null pointer marks list end.

node_t node1 = {(void*)&data[1], &node2}; // Explicit pointer cast int* to void*.

node_t node0 = {&data[0], &node1}; // Explicit cast not needed for void*.

for(node_t *tmp = &node0; tmp; tmp = tmp->next) { // Address of operator.

int *ptr = (int*)tmp->data; // Dereferencing and member access + pointer cast.

printf("%d\n", *ptr); // Dereferencing.

}

return EXIT_SUCCESS;

}

Content of linked-list.c.
148/265 2023 INF107 Part 2 - The C Language

Example: Simple Linked List (2)

tp-5b07-26:~/tmp> ls

linked-list.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g linked-list.c -o linked-list

tp-5b07-26:~/tmp> ls

linked-list linked-list.c

tp-5b07-26:~/tmp> ./linked-list

4

55

-7

149/265 2023 INF107 Part 2 - The C Language

Check Yourself!

1 int main(int argc, char *argv[]) {

2 static int data[] = {4, 067, 0xfffffff9};

3 node_t node2 = {(void*)&data[2], NULL}; // Null pointer marks list end.

4 node_t node1 = {(void*)&data[1], &node2}; // Pointer cast int* to void*.

5 node_t node0 = {(void*)&data[0], &node1};

6
7 for(node_t *tmp = &node0; tmp; tmp = tmp->next) { // Address of operator.

8 int *ptr = (int*)tmp->data; // Dereferencing and member access + pointer cast.

9 printf("%d\n", *ptr); // Dereferencing.

10 }

11 return EXIT_SUCCESS;

12 }

1. How does the compiler assign the address of the variable data (line 2)?
2. What is the alignment of the variable node2 (line 3)?
3. What is the size of node2 in memory?
4. Assuming that the array data starts at address 0x402018, to which address points

node1.data after the initialization of node1?

150/265 2023 INF107 Part 2 - The C Language

Answers

1. The variable has static storage duration. It is thus stored at a global address (not on the stack). It
respects the alignment of the int type (Lab machines: 4).

2. It is the maximum alignment among the members of the structure type struct node. Since it
consists of two pointers, the alignment is determined by those pointers (Lab machines: 8).

3. The variable is a structure consisting of two pointers, which in most cases have the same size
(though this is not guaranteed!). In that case the variable occupies twice the size of a pointer (Lab
machines: 2 ⋅ 8 = 16).

4. The integers of the array data are placed in memory sequentially, starting with the first element.
The address of the first element is thus 0x402018. node1.data is initialized with the address of
the second element, which has to be at 0x402018 + sizeof(int) (Lab machines:
0x402018 + 4, i.e., 0x40201c).

151/265 2023 INF107 Part 2 - The C Language

Lecture 3

152/265 2023 INF107 Part 2 - The C Language

The Standard Library

153/265 2023 INF107 Part 2 - The C Language

Reporting Errors (1)

void perror(const char *s);

Most functions of the C library report errors:

Often as a special return value.
• The return value does not explain why the error occurred.

Many functions in addition set the global variable errno:
• Defined in header errno.h.
• Allows to store an error code as a number.

perror allows to print a readable error message:
• Defined in header stdio.h.
• Based on the value of errno.
• First displays the string s, provided as argument, followed by ": ", and then errno explained

https://en.cppreference.com/w/c/io/perror
https://en.cppreference.com/w/c/error/errno

154/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/perror
https://en.cppreference.com/w/c/error/errno

Reporting Errors (2)

_Noreturn void exit(int exit_code);

Sometimes it does not make sens to continue after an error:

First the error should be reported (e.g., using perror).
Then the program should be terminated using the exit function:

• Calling this function ends the program.
• It takes an exit code as argument.
• This code has the same meaning as the return value of main.
• EXIT_FAILURE can be used to indicate an error.

Of course it is possible to call exit without an error as well.
• Use EXIT_SUCCESS in this case.

https://en.cppreference.com/w/c/program/exit

155/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/program/exit

Managing Heap Memory

156/265 2023 INF107 Part 2 - The C Language

Memory Organization

The usual organization of the processor’s memory:
A part of the memory is reserved for the operating system.
Another part for the machine code of the program.
The rest is for storing data of the program:

• Global data, accessible all the time.
• Stack data, accessible only temporarily.
• Heap data, explicitly managed by the programmer.

How can one use heap
memory?

Operating
System

Machine
Code

Global
Data

Heap
Data

Stack Data

Address 0

A
dd

re
ss

es
in

cr
ea

se

157/265 2023 INF107 Part 2 - The C Language

Heap Memory

Heap memory is managed explicitly by the programmer:

The compiler does not place data or code on the heap by itself.
The programmer explicitly has to:

• Allocate:
Reserve an address range on the heap, depending on the size of data to be stored.

• Free:
Free an allocated address range, when the data there is not needed any longer.

This is important so that other heap operations do not accidentally modify data there.

158/265 2023 INF107 Part 2 - The C Language

Heap Memory Allocation
void *malloc(size_t size);

Defined in the header stdlib.h.
Reserves an address range of the given size (in bytes):

• Returns the starting address as a pointer.
• Returns a null pointer, if the heap is full (no memory space available).

Example:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

int *heapData = malloc(sizeof(int)*4); // Allocate an array of 4 integers on the heap.

if (!heapData) {

perror("malloc failed"); // Print error message, if any.

return EXIT_FAILURE;

}

else return EXIT_SUCCESS; // All memory is freed implicitly.

}

https://en.cppreference.com/w/c/memory/malloc
159/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/memory/malloc

Freeing Heap Memory
void free(void *ptr);

Defined in the header stdlib.h.
Takes a valid heap pointer and frees it:

• Valid pointer: allocated using malloc or a similar function and not freed before.
• Otherwise the result is undefined.

Example:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

int *heapData = malloc(sizeof(int)*4);

if (!heapData) {

perror("malloc failed"); // Print error message, if any.

return EXIT_FAILURE;

} else {

free(heapData); // Explicitly free heap data.

return EXIT_SUCCESS;

}

}

https://en.cppreference.com/w/c/memory/free
160/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/memory/free

Heap Memory Reallocation
void *realloc(void *ptr, size_t new_size);

Defined in the header stdlib.h.
Takes a heap pointer and changes the size of the reserved address range:

• The new size can be smaller or larger.
• It may or may not return the same pointer.
• If the pointer changes, data is copied using the old size.

The pointer needs to be a valid heap pointer (see free).
Returns a null pointer, if the heap is full (no memory space available).
Example:

int main(int argc, char *argv[]) {

int *heapData = malloc(sizeof(int)*4);

if (heapData = realloc(heapData, sizeof(int))) { // Free some space, but not all.

perror("realloc failed");

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

https://en.cppreference.com/w/c/memory/realloc
161/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/memory/realloc

File Input and Output

162/265 2023 INF107 Part 2 - The C Language

Manipulating Files

Files are managed by the operating system (OS):

One has to tell the OS, which files will be manipulated and how.
Opening a file:
Tell the OS that a file is going to be manipulated.
Closing a file:
Tell the OS that the program no longer manipulates the file.
File operations:
Tell the OS that the file will be read and/or (over-)written.

The C standard library provide a higher-level API for manipulating files, based on the abstraction of
(buffered) I/O streams.

163/265 2023 INF107 Part 2 - The C Language

Opening a File (1)

FILE *fopen(const char *filename, const char *mode);

Defined in the header stdio.h.
Open the given file for input/output operations.

• filename:
The name of the file to open.

• mode:
Indicates how the file will be manipulated (see next page).

Returns a pointer to a FILE structure:
• This is called a file stream.
• The data structure itself is unspecified.
• Programmers only manipulate the pointer.
• On error a null pointer is returned.

https://en.cppreference.com/w/c/io/fopen
https://en.cppreference.com/w/c/io/FILE

164/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fopen
https://en.cppreference.com/w/c/io/FILE

Opening a File (2)

Possible modes for fopen:

mode Description File exists File does not exist

"r" Reading only Read from start Error
"w" Writing only Overwrite file Create file
"a" Writing only Append at end Create file

"r+" Read/write Read/write from start Error
"w+" Read/write Overwrite file Create file
"a+" Read/write Read/write at end Create file

https://en.cppreference.com/w/c/io/fopen

165/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fopen

Closing a File

int fclose(FILE *stream);

Defined in the header stdio.h.
Closes the given file:

• The OS makes sure that all data is written to the storage device.
• The file can no longer be manipulated using the FILE pointer.

Returns 0 on success
• On error the constant EOF is returned.

(some negative value, often −1)

https://en.cppreference.com/w/c/io/fclose

166/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fclose

Special File Streams

The C library defines three special file streams:

Defined in the header stdio.h.
stdout:
A stream (aka. a FILE structure) for regular output (write only).
stderr:
A stream to report errors (write only).
stdin:
A stream to read input (read only).
These streams are opened automatically on program start.

https://en.cppreference.com/w/c/io/std_streams

167/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/std_streams

Example: File Output (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

FILE *f = fopen("output.txt", "w"); // Open/create file for writing.

if (!f) {

perror("fopen failed");

return EXIT_FAILURE;

}

else {

fprintf(f, "Hello World %d\n", 57); // Write some text into the file.

if (fclose(f)) { // Close the file.

perror("fclose failed"); // Report an error message (on stderr)

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

}

Content of file-output.c.

168/265 2023 INF107 Part 2 - The C Language

Example: File Output (2)

tp-5b07-26:~/tmp> ls

file-output.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g file-output.c -o file-output

tp-5b07-26:~/tmp> ls

file-output file-output.c

tp-5b07-26:~/tmp> ./file-output

tp-5b07-26:~/tmp> ls

file-output file-output.c output.txt

tp-5b07-26:~/tmp> cat output.txt

Hello World 57

169/265 2023 INF107 Part 2 - The C Language

Formatted File Output

int printf(const char *restrict format, ...);

int fprintf(FILE *restrict stream, const char *restrict format, ...);

int sprintf(char *restrict buffer, const char *restrict format, ...);

Same principle as plain printf:
• fprintf:

– Takes an additional file argument.
– Writes into that file.

• printf:
– Actually the same as fprintf writing to stdout.

• sprintf: takes an additional file argument.
– Takes a pointer to an array as additional argument.
– Writes into that array (buffer).

Format strings are the same.
Return value:

• Number of characters written to file/buffer.
• On error a negative number is returned.

https://en.cppreference.com/w/c/io/fprintf
170/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fprintf

Format Strings Revisited (1)
'%' <flags>? <width>? ('.' <width>?) <size modifier>? <format>

width:
An integer number or '*'

• For strings: Indicates the Number of characters to display.
• For numbers: Number of digits to display (before or after the '.').

flags:
On ore more of the following control characters:

Control Character Description

'-' Align printed text to the left (see width).
'+' Always display sign symbol (+) also for positive numbers.
' ' Print a space instead of sign for positive numbers.
'0' Padding with '0' characters instead of spaces (' ').

171/265 2023 INF107 Part 2 - The C Language

Format Strings Revisited (2)

modifier:
Indicate the type of integer and floating-point numbers to print.

Control String Description

(default) Expect a value of type int when printing numbers.
"hh" Expect type signed char/unsigned char.
"h" Expect type short/unsigned short.
"l" Expect type long/unsigned long or wchar_t.
"ll" Expect type long long/unsigned long long.
"z" Expect type size_t.
"L" Expect type long double.

172/265 2023 INF107 Part 2 - The C Language

Format Strings Revisited (3)

format:

Control Character Description

'c' Displays a character symbol (use modifier).
'd' Displays a signed integer value as decimal (use modifier).
'u' Displays a unsigned integer value as decimal (use modifier).
'x' Displays an integer value as hexadecimal (use modifier).
'f' Displays an floating-point number as decimal (accepts modifier L).
'e' Displays an floating-point number in exponent notation (accepts modifier L).
's' Displays all the characters of a string.
'p' Displays the address of a pointer.

173/265 2023 INF107 Part 2 - The C Language

Example: Formatted Output (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

short s = 540;

int i = 0xfbfb;

float f = i * 1.133e5;

static const char string[] = "|Left Aligned|";

printf("size_t:%zd\n", sizeof(int));

printf("Integer numbers (decimal): % hd and %+d\n", s, i); // Printing of sign.

printf("Integer numbers (hex): 0x%8x and 0x%08X\n", s, i); // Padding with ' ' or '0'.

printf("Floating-point numbers: %020.3f and %12.3e\n", f, f); // Width before/after '.'.

printf("String: %-20s is aligned\n", string); // Left aligned.

return EXIT_SUCCESS;

}

Content of print2.c.

174/265 2023 INF107 Part 2 - The C Language

Example: Formatted Output (2)

tp-5b07-26:~/tmp> ls

print2.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g print2.c -o print2

tp-5b07-26:~/tmp> ls

print2 print2.c

tp-5b07-26:~/tmp> ./print2

size_t:4

Integer numbers (decimal): 540 and +64507

Integer numbers (hex): 0x 21c and 0x0000FBFB

Floating-point numbers: 0000007308643328.000 and 7.309e+09

String: |Left Aligned| is aligned

175/265 2023 INF107 Part 2 - The C Language

Formatted File Input

int scanf(const char *restrict format, ...);

int fscanf(FILE *restrict stream, const char *restrict format, ...);

int sscanf(const char *restrict buffer, const char *restrict format, ...);

Same principle as for printf:
• fscanf:

– Takes a file argument.
– Reads from that file depending on format string.

• scanf:
– Actually the same as fscanf reading from stdin.

• sscanf: takes an additional file argument.
– Takes a pointer to an array as argument.
– Reads from that array (buffer).

Format strings are similar, but not quite the same.
Return value:

• Number of values read successfully.
• Or EOF in case of an error.

https://en.cppreference.com/w/c/io/fscanf
176/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fscanf

Format Strings for Input (1)

Same basic idea as for printf:

Regular characters (except whitespace and '%'):
• Indicate that precisely such a character needs to be read.
• Otherwise an error is signaled.

Whitespace characters (e.g., ' ', '\t', '\n', …):
• Consume all available consecutive whitespaces.
• It is sufficient to indicate a single whitespace.

The '% character again has special meaning:
• It indicates that a value should be read from the file.
• Always expects an address where to store the read value, i.e., a pointer or array.

https://en.cppreference.com/w/c/io/fscanf

177/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/io/fscanf

Format Strings for Input (2)

'%' '*'? <width>? <size modifier>? <format>

A preceding * indicates that the value should not be assigned to a pointer, just read.

width:
Indicates the maximum width to read (recommended particularly for strings).

size modifier:
Same as for printf, i.e., ("hh", "h", "l", "ll", "z", and L).

format:
Same as for printf, i.e., ('c', 's', 'd', 'u', 'x', f, and e).

• Reading a string with "%s" adds the null character.
– Arrays/pointers receiving a string thus need size width + 1.

• Indicating a width with "%c" reads width characters.
– No null character is added.

• Reading numbers skips leading whitespaces.

178/265 2023 INF107 Part 2 - The C Language

Example: Formatted Input (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

FILE *f = fopen(argv[1], "r"); // Open file for reading.

if (!f) {

perror("fopen failed"); return EXIT_FAILURE;

} else {

char c, s[50];

int i;

int read = fscanf(f, "%s%d%c\n", s, &i, &c); // Read a string, an integer, and a character.

if (read != 3) {

perror("fscanf failed"); return EXIT_FAILURE;

}

printf("%s\n%d\n0x%x\n", s, i, c);

if (fclose(f)) { // Close the file.

perror("fclose failed"); return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

}

Content of file-input.c.

179/265 2023 INF107 Part 2 - The C Language

Example: Formatted Input (2)

tp-5b07-26:~/tmp> ls

file-input.c input.txt

tp-5b07-26:~/tmp> cat input.txt

String_without_whitespace_plus_null_character

3

a

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g file-input.c -o file-input

tp-5b07-26:~/tmp> ls

file-input file-input.c input.txt

tp-5b07-26:~/tmp> ./file-input no-file.txt

fopen failed: No such file or directory

tp-5b07-26:~/tmp> ./file-input input.txt

String_without_whitespace_plus_null_character

3

0xa

180/265 2023 INF107 Part 2 - The C Language

Check Yourself!

Something (maybe) unexpected happened in the previous example.

1. Can you spot it?

Hint:
hexdump shows the content of input.txt as hexadecimal numbers (left) and characters
(right).
tp-5b07-26:~/tmp> hexdump -C input.txt

00000000 53 74 72 69 6e 67 5f 77 69 74 68 6f 75 74 5f 77 |String_without_w|

00000010 68 69 74 65 73 70 61 63 65 5f 70 6c 75 73 5f 6e |hitespace_plus_n|

00000020 75 6c 6c 5f 63 68 61 72 61 63 74 65 72 0a 33 0a |ull_character.3.|

00000030 61 0a |a.|

00000032

2. Correct the format string to get the intended behavior.

181/265 2023 INF107 Part 2 - The C Language

Answer

1. The character read by scanf is not the one that you might have expected:

The input file seemingly ends with a character 'a', right?
However, there are also line feed characters (see Escape Sequences).
tp-5b07-26:~/tmp> hexdump -C input.txt

00000000 53 74 72 69 6e 67 5f 77 69 74 68 6f 75 74 5f 77 |String_without_w|

00000010 68 69 74 65 73 70 61 63 65 5f 70 6c 75 73 5f 6e |hitespace_plus_n|

00000020 75 6c 6c 5f 63 68 61 72 61 63 74 65 72 0a 33 0a |ull_character.3.|

00000030 61 0a |a.|

Character read!
The form feed character ('\n', aka. 0xa) was read, not the 'a'.

2. It is sufficient to skip the whitespace(s) after reading the integer number, i.e., it suffices to insert a
space after the 'd'.

182/265 2023 INF107 Part 2 - The C Language

Example: Formatted Input Corrected (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

FILE *f = fopen(argv[1], "r"); // Open file for reading.

if (!f) {

perror("fopen failed"); return EXIT_FAILURE;

} else {

char c, s[50];

int i;

int read = fscanf(f, "%s%d %c\n", s, &i, &c); // Read a string, an integer, and a character.

if (read != 3) {

perror("fscanf failed"); return EXIT_FAILURE;

}

printf("%s\n%d\n0x%x\n", s, i, c);

if (fclose(f)) { // Close the file.

perror("fclose failed"); return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

}

Content of file-input2.c.

183/265 2023 INF107 Part 2 - The C Language

Example: Formatted Input Corrected (2)

tp-5b07-26:~/tmp> ls

file-input2.c input.txt

tp-5b07-26:~/tmp> cat input.txt

String_without_whitespace_plus_null_character

3

a

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g file-input2.c -o file-input2

tp-5b07-26:~/tmp> ls

file-input2 file-input2.c input.txt

tp-5b07-26:~/tmp> ./file-input2 no-file.txt

fopen failed: No such file or directory

tp-5b07-26:~/tmp> ./file-input2 input.txt

String_without_whitespace_plus_null_character

3

0x61

184/265 2023 INF107 Part 2 - The C Language

Strings

Strings are just arrays/pointers:

Comparison (==) and assignment (=):
• Do not compare/copy characters.
• Instead operate on pointers.
• May produce (maybe) confusing results:

#include <stdio.h>

int main(int argc, char *argv[]) {

char sa[] = "aaa";

char sb[] = "aaa";

// Always prints "false".

if (sa == sb)

printf("true\n");

else

printf("false\n");

return EXIT_SUCCESS;

}

#include <stdio.h>

int main(int argc, char *argv[]) {

char *sa = "aaa";

char *sb = "aaa";

// May print "true" or "false".

if (sa == sb)

printf("true\n");

else

printf("false\n");

return EXIT_SUCCESS;

}

Operator cannot be used to concatenate strings or numbers.
185/265 2023 INF107 Part 2 - The C Language

String Operations

int strncmp(const char* lhs, const char* rhs, size_t count);

char *strncpy(char *restrict dest, const char *restrict src, size_t count);

char *strncat(char *restrict dest, const char *restrict src, size_t count);

char *strndup(const char *src, size_t size);

Defined in header string.h.
strncmp: Compare strings by lexicographic order, at most count characters.
(returns 0 when the strings are equal, else positive or negative number).
strncpy: Copy at most count characters from one string to another.
strncat: Concatenate at most count characters of one string to another.
strndup: Makes a copy of the string by allocating a new string on the heap.

https://en.cppreference.com/w/c/string/byte/strncmp
https://en.cppreference.com/w/c/string/byte/strncpy
https://en.cppreference.com/w/c/string/byte/strncat
https://en.cppreference.com/w/c/string/byte/strndup

186/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/string/byte/strncmp
https://en.cppreference.com/w/c/string/byte/strncpy
https://en.cppreference.com/w/c/string/byte/strncat
https://en.cppreference.com/w/c/string/byte/strndup

Memory Area Operations

int memcmp(const void* lhs, const void* rhs, size_t count);

void *memcpy(void *restrict dest, const void *restrict src, size_t count);

void *memset(void *dest, int c, size_t count);

Defined in header string.h.
memcmp: Compare memory areas (“byte strings”) by lexicographic order, looking at the first
count bytes.
(returns 0 when the memory areas are equal, else positive or negative number).
memcpy: Copy precisely count bytes from one area to another.
memset: Set precisely count bytes to the value of c.

https://en.cppreference.com/w/c/string/byte/memcmp
https://en.cppreference.com/w/c/string/byte/memcpy
https://en.cppreference.com/w/c/string/byte/memset

187/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/string/byte/memcmp
https://en.cppreference.com/w/c/string/byte/memcpy
https://en.cppreference.com/w/c/string/byte/memset

Manipulating Addresses and Pointers

188/265 2023 INF107 Part 2 - The C Language

Manipulating Addresses and Pointers

In C memory addresses and pointers can be manipulated explicitly:

Casting:
• It is possible to cast integer values to pointers.

(many aspects of this are implementation-defined)
• It is possible to cast one pointer type to another.

– Casts to/from void* (e.g., as for library functions before).
– Casts to/from char* to access individual bytes.

Pointer Arithmetic:
• It is possible to address objects relative to pointers using +/- or [].
• Increment/decrement pointers.

In all cases:
• Alignment has to be respected.
• Computed addresses using pointers have to be valid.

(correspond to a global, local, or heap object)
• Otherwise the result is usually undefined.

189/265 2023 INF107 Part 2 - The C Language

Addresses and Array Subscripting

Access the 𝑛-th element from the start of the pointer/array:

#include <stdio.h>

// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

// Point to beginning of array.

int *ptr = array;

printf("ptr : %p\n", ptr);

printf("&ptr[2]: %p\n", &ptr[2]);

printf("ptr[2] : %d\n", ptr[2]);

return EXIT_SUCCESS;

}

tp-5b07-26:~/tmp> ./pointer-address

ptr : 0x402020

&ptr[2]: 0x402028

ptr[2] : 3

Memory layout:
64-bit Value

Address 32-bit Value 32-bit Value Value of

0x402020 0x00000001 0x00000002 array

0x402028 0x00000003 0x00000004 array

0x402030 0x00000005 0x00000006 array

… … … …
0x7f.... 0x0000000000402020 ptr

Memory computation:
0x402020 + 2 ∗ sizeof(int)

190/265 2023 INF107 Part 2 - The C Language

Addresses and Pointer Arithmetic

Actually is the same as array subscripting:

#include <stdio.h>

// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

// Point to beginning of array.

int *ptr = array;

printf("ptr : %p\n", ptr);

printf("ptr + 2 : %p\n", ptr + 2);

printf("*(ptr + 2): %d\n", *(ptr + 2));

return EXIT_SUCCESS;

}

tp-5b07-26:~/tmp> ./pointer-address2

ptr : 0x402020

ptr + 2 : 0x402028

*(ptr + 2): 3

Memory layout:
64-bit Value

Address 32-bit Value 32-bit Value Value of

0x402020 0x00000001 0x00000002 array

0x402028 0x00000003 0x00000004 array

0x402030 0x00000005 0x00000006 array

… … … …
0x7f.... 0x0000000000402020 ptr

Memory computation:
0x402020 + 2 ∗ sizeof(int)

191/265 2023 INF107 Part 2 - The C Language

Pointer Arithmetic

Array subscripting and pointer arithmetic are similar:

Compute an address relative to start of the array/pointer
• <Pointer-address> + <Index> ∗ sizeof(<Type>) or
<Pointer-address> − <Index> ∗ sizeof(<Type>)

• The computed address might be smaller or larger than the pointer’s address.
• The index is automatically scaled by the element size (sizeof).

Pointers can also be incremented or decremented
• Use the pre-/post- inc-/decrement operators (++ or --).
• The address computation is the same.
• Writes resulting address back into the pointer.

192/265 2023 INF107 Part 2 - The C Language

Example: Pointer Arithmetic (1)

#include <stdio.h>

#include <stdlib.h>

// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

int *ptr = array; // Point to beginning of array.

for(int i = 0; i < 3; i++) { // Increment pointer (element-wise).

printf("ptr: %p\t*ptr: ", ptr);

printf("0x%08x ", *ptr++); printf("0x%08x\n", *ptr++);

}

printf("\nbyteswise:\n"); // Increment pointer (byte-wise).

for(char *charptr = (char*)array; charptr < (char*)array + sizeof(array); charptr++)

printf("%02x", *charptr);

printf("\n");

return EXIT_SUCCESS;

}

Content of pointer-increment.c.

193/265 2023 INF107 Part 2 - The C Language

Example: Pointer Arithmetic (2)

tp-5b07-26:~/tmp> ls

pointer-increment.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g pointer-increment.c -o pointer-increment

tp-5b07-26:~/tmp> ls

pointer-increment pointer-increment.c

tp-5b07-26:~/tmp> ./pointer-increment

ptr: 0x402030 *ptr: 0x00000001 0x00000002

ptr: 0x402038 *ptr: 0x00000003 0x00000004

ptr: 0x402040 *ptr: 0x00000005 0x00000006

byteswise:

010000000200000003000000040000000500000006000000

194/265 2023 INF107 Part 2 - The C Language

Check Yourself!
// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

int *ptr = array; // Point to beginning of array.

for(int i = 0; i < 3; i++) // Increment pointer (element-wise).

printf("ptr: %p\t*ptr: 0x%08x 0x%08x\n", ptr, *ptr++, *ptr++);

printf("\nbyteswise:\n"); // Increment pointer (byte-wise).

for(char *charptr = (char*)array; charptr < (char*)array + sizeof(array); charptr++)

printf("%02x", *charptr);

printf("\n");

return EXIT_SUCCESS;

}

1. This expression (char*)array + sizeof(array) seems wrong, since the index is scaled by
the element size of the pointer, i.e., the compiler should compute something like
sizeof(array) * sizeof(int). The code thus should read the memory beyond the array.
Where is the error in this reasoning?

2. There is actually something problematic in this code? Can you spot it?
195/265 2023 INF107 Part 2 - The C Language

Answer

1. The precedence of the cast, which is stronger than the addition, the expression thus has to be
read as ((char*)array) + sizeof(array). The reasoning from above is thus not entirely
wrong. The only issue is the element size, which is not sizeof(int) but sizeof(char), since
the pointer arithmetic operates on a char pointer.

2. The following code line is problematic:
printf("ptr: %p\t*ptr: 0x%08x 0x%08x\n", ptr, *ptr++, *ptr++);

The evaluation order of the side-effects of call arguments is unspecified.
The same variable ptr is modified twice.
Consequently, the behavior of this expression is undefined.

196/265 2023 INF107 Part 2 - The C Language

Lab Exercises

Work with pointers, structures, dynamic memory allocation, formatted input and output:

Find a delimiter character in an array.
• Simple pointer/array manipulation.

Define a structure and manipulate a simple structure.
• Simple pointer/structure manipulation.
• Formatted output (fprintf, …).

Read formatted data into a (static) structure.
• Formatted input and output (fscanf, fprintf, …).
• String manipulation (strndup, …).
• Error handling (perror, exit).

Manipulating a structure on the heap.
• Pointer manipulation.
• Memory management (malloc, free, realloc).

197/265 2023 INF107 Part 2 - The C Language

Lecture 4

198/265 2023 INF107 Part 2 - The C Language

The Preprocessor

199/265 2023 INF107 Part 2 - The C Language

Preprocessor Directives

C programs actually consist of two languages:

Preprocessing directives:
• All lines that start with the symbol #.
• Examples:

– #include <stdio.h>

– #define NDEBUG

– #ifndef _STDIO_H

– #endif /* <stdio.h> included. */

The actual C code:
• Declarations, functions, expressions, statements.
• Does not comprise preprocessing directives.

https://en.cppreference.com/w/c/preprocessor

200/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/preprocessor

The Preprocessor

A special compiler phase handling preprocessor directives:

Performs substitutions of text/code only.

Supports conditionals:

• Conditional inclusion of text/code.
• Conditionally triggering compiler errors.

Provides a simple macro language:

• Macros are a form of functions that may take arguments.
• Special support for string manipulation.
• Allow to produce text/code.

Allows to obtain information (source file, position in file).

https://en.cppreference.com/w/c/preprocessor

201/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/preprocessor

Preprocessor: #include

Substitute the current line with the contents of a file:

Comes in two variants:
• '#include' '<' <Header-name> '>'

Searches for a header file in standard directories, e.g., of the standard library.
• '#include' '"' <File-name> '"'

Searches for a header file in user-specified directories, e.g., of the current project.
The included file contents is preprocessed in-turn.

https://en.cppreference.com/w/c/preprocessor/include

202/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/preprocessor/include

Example: #include (1)

// Declarations in header.

typedef struct node node_t;

struct node {

void *data;

node_t *next;

};

Content of linked-list2.h.

#include <stdio.h> // Include system header files.

#include <stdlib.h>

#include "linked-list2.h" // Include project header file.

int main(int argc, char *argv[]) {

static int data[] = {4, 067, 0xfffffff9};

node_t node2 = {&data[2], NULL};

node_t node1 = {(void*)&data[1], &node2};

node_t node0 = {&data[0], &node1};

for(node_t *tmp = &node0; tmp; tmp = tmp->next) {

int *ptr = (int*)tmp->data;

printf("%d\n", *ptr);

}

return EXIT_SUCCESS;

}

Content of linked-list2.c.

203/265 2023 INF107 Part 2 - The C Language

Example: #include (2)

We can ask gcc to only run the preprocessor using the -E option:
tp-5b07-26:~/tmp> ls

linked-list2.c linked-list2.h

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g linked-list2.c -E -o linked-list2.i

tp-5b07-26:~/tmp> ls

linked-list2.c linked-list2.h linked-list2.i

The content of linked-list2.i is shown on the next slide.

204/265 2023 INF107 Part 2 - The C Language

Example: #include (3)

745 # 1013 "/usr/include/stdlib.h" 3 4

746 # 1014 "/usr/include/stdlib.h" 2 3 4

747 # 1023 "/usr/include/stdlib.h" 3 4

748
749 # 3 "linked-list2.c" 2

750
751 # 1 "linked-list2.h" 1

752
753 # 1 "linked-list2.h"

754 typedef struct node node_t;

755 struct node {

756 void *data;

757 node_t *next;

758 };

759 # 5 "linked-list2.c" 2

760 int main(int argc, char *argv[]) {

761 static int data[] = {4, 067, 0xfffffff9};

762 node_t node2 = {&data[2],

763 # 8 "linked-list2.c" 3 4

764 ((void *)0)

765 # 8 "linked-list2.c"

766 };

767 node_t node1 = {(void*)&data[1], &node2};

768 node_t node0 = {&data[0], &node1};

769
770 for(node_t *tmp = &node0; tmp; tmp = tmp->next) {

771 int *ptr = (int*)tmp->data;

772 printf("%d\n", *ptr);

773 }

774 return

775 # 16 "linked-list2.c" 3 4

776 0

777 # 16 "linked-list2.c"

778 ;

779 }

Content of linked-list2.i.

205/265 2023 INF107 Part 2 - The C Language

Preprocessor: #define

Define a macro that can later be used for text substitutions:
'#define' <Identifier> ('(' <Parameters>')')?

<Text>?

Identifier

The identifier of the macro (used to refer to the macro for substitution).
Parameters

Optional list of identifiers, separated by commas (,), defining macro parameters.
Text

Text that replaces the macro upon use.

https://en.cppreference.com/w/c/preprocessor/replace

206/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/preprocessor/replace

Example: #define (1)
#include <stdio.h>

#include <stdlib.h>

// An empty macro.

#define EMPTY

// A macro defining a constant.

#define SIZE 10u

// A function-like macro.

#define ACCESS(x) ((x) >= (SIZE) ? 0 : array[x])

// Tip: always parenthesize macro params (x) to avoid precedence issues

int array[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

int main(int argc, char *argv[]) {

int idx = 0;

while (scanf("%d", &idx) == 1) {

// Special macros __FILE__ and __LINE__

printf("%s: %d: %d\n", __FILE__, __LINE__, ACCESS(idx));

}

return 0 EMPTY;

}

Content of macro.c.
207/265 2023 INF107 Part 2 - The C Language

Example: #define (2)

We can ask gcc to only run the preprocessor using the -E option:
tp-5b07-26:~/tmp> ls

macro.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g macro.c -E -o macro.i

tp-5b07-26:~/tmp> ls

macro.c macro.i

The content of macro.i is shown on the next slide.

208/265 2023 INF107 Part 2 - The C Language

Example: #define (3)

521 # 858 "/usr/include/stdio.h" 3 4

522 extern int __uflow (FILE *);

523 extern int __overflow (FILE *, int);

524 # 873 "/usr/include/stdio.h" 3 4

525
526 # 2 "macro.c" 2

527 # 10 "macro.c"

528
529 # 10 "macro.c"

530 int array[10u] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

531
532 int main(int argc, char *argv[]) {

533 int idx = 0;

534 while (scanf("%d", &idx) == 1) {

535
536 printf("%s: %d: %d\n", "macro.c", 16, ((idx) >= (10u) ? 0 : array[idx]));

537 }

538
539 return 0 ;

540 }

Content of macro.i.

209/265 2023 INF107 Part 2 - The C Language

Preprocessor: #if and #endif

Conditional text inclusion:
'#if' <Expression> '#endif'

Expression

Consisting of constants and macro identifiers.

• May contain usual C operators.
• Undefined identifiers evaluate to 0, except true.
• Expressions may contain 'defined' <Identifier> or defined '(' <Identifier> ')':

– Check whether a macro with the given identifier was defined.

#endif

Required to closes an #if (on a separate line).

The text between the #if and #endif is only included when the expression evaluates to
non-zero.

https://en.cppreference.com/w/c/preprocessor/conditional

210/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/preprocessor/conditional

Preprocessor: #ifdef and #ifndef

Conditional text inclusion:
'#ifdef' <Identifier> '#ifndef' <Identifier>

#ifdef:
Is the same as '#if' 'defined' '(' <Identifier> ')'.
#ifndef:
Is the same as '#if' '!' 'defined' '(' <Identifier> ')'.
#endif

Also required to close #ifdef and #ifndef.

https://en.cppreference.com/w/c/preprocessor/conditional

211/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/preprocessor/conditional

Preprocessor: #error

'#error' <Message>

If the preprocessor encounters an #error directive.

• It signals an error and prints the indicated message.
• The compilation fails.

This is useful to check for library features.

The error directive is often guarded by an #if.

https://en.cppreference.com/w/c/preprocessor/error

212/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/preprocessor/error

Example: #if and #error (1)

#include <stdio.h>

#include <stdlib.h>

#define SIZE 10

#if SIZE < 20

#error "The size is not sufficiently large."

#endif

#if __STDC_VERSION__ < 201710L

#error "Not the right version of C."

#endif

int main(int argc, char *argv[]) {

printf("%d\n", SIZE);

return EXIT_SUCCES;

}

Content of conditional.c.

213/265 2023 INF107 Part 2 - The C Language

Example: #if and #error (2)

tp-5b07-26:~/tmp> ls

conditional.c

tp-5b07-26:~/tmp> gcc -std=c11 -Wall -E -o conditional conditional.c

conditional.c:7:2: error: #error "The size is not sufficiently large."

#error "The size is not sufficiently large."

^~~~~

conditional.c:11:2: error: #error "Not the right version of C."

#error "Not the right version of C."

^~~~~

214/265 2023 INF107 Part 2 - The C Language

Finding and Avoiding Bugs

215/265 2023 INF107 Part 2 - The C Language

Assertions (1)

Any program is written with some assumptions in mind:

How can you document these assumptions?

How can you make sure that these assumptions are really satisfied?
• Runtime Assertions:

Check assumptions while the program executes.
– Print an error message and maybe abort the program.
– Always works.
– May detect unforeseen glitches (e.g., bit flips).
– Detects errors/violations when it is too late.
– May slow down execution.

• Static Assertions:
Compiler checks assumptions and reports a compiler error.

– Prevents errors before they happen.
– Limited to assumptions that can be checked at compile time.
– No runtime overhead.

216/265 2023 INF107 Part 2 - The C Language

Runtime Assertions

'assert' '(' <Condition> ')'

Defined in assert.h.
If the condition evaluates to zero:

• assert prints an error message and aborts the program.
• Otherwise the program continues normally.

Implementation:
• assert actually is a preprocessor macro.
• It can be deactivated by defining NDEBUG.

#ifdef NDEBUG

#define assert(condition) ((void)0)

#else

#define assert(condition) /*implementation defined*/

#endif

https://en.cppreference.com/w/c/error/assert

217/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/error/assert

Example: Runtime Assertions (1)

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

int safe_division(int dividend, int divisor) {

assert(divisor != 0);

return dividend/divisor;

}

int main(int argc, char *argv[]) {

printf("%d\n", safe_division(25, 7));

printf("%d\n", safe_division(25, 0));

return EXIT_SUCCESS;

}

Content of assertion.c.

218/265 2023 INF107 Part 2 - The C Language

Example: Runtime Assertions (2)

tp-5b07-26:~/tmp> ls

assertion.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g assertion.c -o assertion

tp-5b07-26:~/tmp> ls

assertion assertion.c

tp-5b07-26:~/tmp> ./assertion

3

assertion: assertion.c:7: safe_division: Assertion `divisor != 0' failed.

Aborted (core dumped)

NDEBUG is not defined by default – assertions are checked.

219/265 2023 INF107 Part 2 - The C Language

Example: Runtime Assertions (3)

The gcc compiler allows to define preprocessor symbols using the option -D:
tp-5b07-26:~/tmp> ls

assertion.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g -DNDEBUG assertion.c -o assertion

tp-5b07-26:~/tmp> ls

assertion assertion.c

tp-5b07-26:~/tmp> ./assertion

3

Floating point exception (core dumped)

NDEBUG is explicitly defined using -D – assertions are not checked.

220/265 2023 INF107 Part 2 - The C Language

Static Assertions

'_Static_assert' '(' <Constant-Expression> (',' <Message>)? ')'

Is a C language keyword.

If the expression evaluates to zero (at compile time):

• Triggers a compiler error.
• Displays the optional error message.
• Otherwise the compiler takes no action.

(does not produce code for the static assertion)

An alias static_assert is defined in assert.h.

https://en.cppreference.com/w/c/language/_Static_assert

221/265 2023 INF107 Part 2 - The C Language

https://en.cppreference.com/w/c/language/_Static_assert

Example: Static Assertions (1)

#include <assert.h>

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

// Checked by C compiler

static_assert(sizeof(int) == 8, "Expecting integer to have 8 bytes.");

// Checked by Preprocessor

// INT_MAX is defined by limits.h

#if INT_MAX != 0x7FFFFFFFFFFFFFFF

#error "Expecting integer to have 8 bytes."

#endif

int main(int argc, char *argv[]) {

return EXIT_FAILURE;

}

Content of static-assertion.c.

222/265 2023 INF107 Part 2 - The C Language

Example: Static Assertions (2)

tp-5b07-26:~/tmp> ls

static-assertion.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g static-assertion.c -o static-assertion

In file included from static_assertion.c:1:0:

static_assertion.c:7:1: error: static assertion failed: "Expecting integer to have 8 bytes."

static_assert(sizeof(int) == 8, "Expecting integer to have 8 bytes.");

^

static_assertion.c:11:2: error: #error "Expecting integer to have 8 bytes."

#error "Expecting integer to have 8 bytes."

^~~~~

223/265 2023 INF107 Part 2 - The C Language

The Memcheck Tool

Memcheck is part of the Valgrind tool suite:

It tracks all memory accesses, allocations, frees, …while executing a program.

Based on these traces Memcheck reports:

• Memory leaks (i.e., memory not freed).
• Double freeing (memory freed twice).
• Accesses to freed memory locations.
• Accesses to uninitialized memory locations.

It is good practice to check your code with Memcheck (or similar tools).

Usage on the command line:
'valgrind' '--leak-check=full' <Program> <Command-line Arguments>?

https://valgrind.org/

224/265 2023 INF107 Part 2 - The C Language

https://valgrind.org/

Example: Memory Errors (1)
1 #include <stdio.h>

2 #include <stdlib.h>

3
4 void polluteStack(const char data) {

5 char local[sizeof(int) + sizeof(void*)];

6 for(int i = 0; i < sizeof(int) + sizeof(void*); i++)

7 local[i] = data;

8 }

9 void *myAlloc(size_t size) { // Produce 4 different memory errors.

10 int b; // Uninitialized local variable.

11 void *result = b & 2 ? &b : malloc(size); // Valid/Invalid pointer.

12 if (b & 1)

13 free(result); // Free valid/invalid pointer.

14 return result; // Return a valid/invalid pointer.

15 }

16 int main(int argc, char *argv[]) {

17 polluteStack(argc - 1); // Control content of variable b.

18 int *array = myAlloc(3*sizeof(int)); // Get valid/invalid pointer.

19 for(int i = 0; i <= 3; i++)

20 array[i] = i; // Always produce an error.

21 }

Content of memcheck.c.
225/265 2023 INF107 Part 2 - The C Language

Example: Memory Errors (2)
tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g memcheck.c -o memcheck

tp-5b07-26:~/tmp> valgrind --leak-check=full ./memcheck

<snip>

==6631== Conditional jump or move depends on uninitialised value(s)

==6631== at 0x4005A9: myAlloc (memcheck.c:12)

==6631== by 0x4005E5: main (memcheck.c:18)

==6631==

==6631== Invalid write of size 4

==6631== at 0x40060A: main (memcheck.c:20)

==6631== Address 0x523504c is 0 bytes after a block of size 12 alloc`d

==6631== at 0x4C332EF: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==6631== by 0x40059C: myAlloc (memcheck.c:11)

==6631== by 0x4005E5: main (memcheck.c:18)

==6631==

==6631== HEAP SUMMARY:

==6631== in use at exit: 12 bytes in 1 blocks

==6631== total heap usage: 1 allocs, 0 frees, 12 bytes allocated

==6631==

==6631== 12 bytes in 1 blocks are definitely lost in loss record 1 of 1

==6631== at 0x4C332EF: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==6631== by 0x40059C: myAlloc (memcheck.c:11)

==6631== by 0x4005E5: main (memcheck.c:18)

<snip>

226/265 2023 INF107 Part 2 - The C Language

Example: Memory Errors (3)
tp-5b07-26:~/tmp> valgrind --leak-check=full ./memcheck 1

<snip>

==6853== Conditional jump or move depends on uninitialised value(s)

==6853== at 0x4005A9: myAlloc (memcheck.c:12)

==6853== by 0x4005E5: main (memcheck.c:18)

==6853==

==6853== Invalid write of size 4

==6853== at 0x40060A: main (memcheck.c:20)

==6853== Address 0x5235040 is 0 bytes inside a block of size 12 free`d

==6853== at 0x4C3451B: free (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==6853== by 0x4005B6: myAlloc (memcheck.c:13)

==6853== by 0x4005E5: main (memcheck.c:18)

==6853== Block was alloc`d at

==6853== at 0x4C332EF: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==6853== by 0x40059C: myAlloc (memcheck.c:11)

==6853== by 0x4005E5: main (memcheck.c:18)

==6853==

==6853==

==6853== HEAP SUMMARY:

==6853== in use at exit: 0 bytes in 0 blocks

==6853== total heap usage: 1 allocs, 1 frees, 12 bytes allocated

<snip>

227/265 2023 INF107 Part 2 - The C Language

Other Useful Tools

Debuggers:
• Allow to stop execution, single-step, inspect state …
• Are unfortunately often cumbersome to use.

– gdb is the golden standard on Linux.
– You have seen gdbgui already.
– Many IDE’s come with graphical debuggers.

Profiler:
• Collect statistics on program execution.
• Allow to spot performance issues.
• Even harder to use than debuggers:

– valgrind, gprof, DTrace, Linux perf, …
Test Coverage:

• Tools to do program testing.
• Coverage indicates how well the code is tested.

(e.g., statement coverage: every statement was tested at least once)
– gcov for gcc, SanitizerCoverage for clang

228/265 2023 INF107 Part 2 - The C Language

Check Yourself! (1)

1. Suppose you write a piece of code that relies on the alignment of the following structure:

struct alignedStructure

{

unsigned Address;

char Payload[16];

};

How can you express in your code that the alignment of this structure should be at least the
size of the int type?

2. Is the requirement of the code from the previous question satisfied in all standard-compliant
implementation? Why/Why not?

229/265 2023 INF107 Part 2 - The C Language

Check Yourself! (2)

3. What happens when you call free with a pointer that was not allocated on the heap (e.g., NULL
or a pointer to a local variable on the stack)?

4. What happens when you deference a pointer to the heap that was freed?

5. How can you protect your code from such an error, or at least detect such a situation?

230/265 2023 INF107 Part 2 - The C Language

Answers (1)

1. The size of the type int can be determined using the expression sizeof(int), while the
alignment of the structure can be determined using _Alignof(alignedStructure). These
are clearly expressions of the C language and have to be handled by the C compiler, thus you may
express this assumption as a static assertion:

_Static_assert(_Alignof(alignedStructure) >= sizeof(int));

2. The alignment of the structure is compatible with the alignment of its members. So the alignment
of the structure has to be at least the alignment of the unsigned member Address. In addition,
the size and alignment of any signed integer type and its unsigned variant are identical. However,
there is no link between alignment and size. Consequently, it is not guaranteed that this
assumption is satisfied in all standard-compliant compilers.

231/265 2023 INF107 Part 2 - The C Language

Answers (2)

3. The result is undefined. On the lab machines the free function will in most cases detect the error,
print an error message, and abort the program.

4. The result is undefined. On the lab machines in most cases nothing suspicious will happen
immediately (there is probably no error message and the program continues quietly), after all the
accessed address was valid just before the call to free. However, the address to which the
pointer points might be reused by a subsequent call to malloc. Manipulating the memory
through the initial pointer may then cause unforeseeable side-effects, e.g., the values of some
object on the heap changes unexpectedly.

5. There is no good way to protect your C code against such errors – except switching to a safe
language such as Rust or Java. Tools such as valgrind are able to detect such errors at
runtime. Consequently, rigorous testing is in many cases the best way to find such errors.

232/265 2023 INF107 Part 2 - The C Language

Structuring a Code Base

233/265 2023 INF107 Part 2 - The C Language

Means to Structure Code

The C language provides little means to structure code:

Regular C source files:
• Just a sequence of declarations/definitions.

(global variables, functions, derived types)
• Variables/functions can be declared private using static.

Header files:
• Just a sequence of declarations.

(derived types, variables/function with extern)
• Everything in a header file is visible to other translation units.

That’s it.

234/265 2023 INF107 Part 2 - The C Language

Structuring a Code Base

Use multiple C and header files.
Group related algorithms/functions in a C source file (.c):

• Function definitions.
• Global variable declarations.

Provide a matching header file (.h):
• Types for data structures.
• Declarations of variables/functions.
• Preprocessor definitions and directives.

Use a common prefix for global function, types, and variable names (e.g., mylib_*)
• The C namespace is unique and shared by all translation units!

Use sub-directories.
• Regroup related header and source files.
• Use sub-sub-directories.

235/265 2023 INF107 Part 2 - The C Language

Writing and Using Header Files

A header file defines an interface to an implementation:

The interface allows to accesses functions/data structures.

The interface is potentially (re)used several times.

• Headers may include other headers.
• C source files may include header files.

⟹ A C source file may include directly/indirectly the same header file multiple times.

236/265 2023 INF107 Part 2 - The C Language

Example: Redundant Header Inclusion (1)

typedef struct node node_t;

struct node {

void *data;

node_t *next;

};

Content of linked-list3.h.

#include <stdio.h>

#include <stdlib.h>

#include "linked-list3.h" // Including the same header ...

#include "linked-list3.h" // twice, causes compiler errors.

int main(int argc, char *argv[]) {

static int data[] = {4, 067, 0xfffffff9};

node_t node2 = {&data[2], NULL};

node_t node1 = {(void*)&data[1], &node2};

node_t node0 = {&data[0], &node1};

for(node_t *tmp = &node0; tmp; tmp = tmp->next) {

int *ptr = (int*)tmp->data;

printf("%d\n", *ptr);

}

return EXIT_SUCCESS;

}

Content of linked-list3.c.

237/265 2023 INF107 Part 2 - The C Language

Example: Redundant Header Inclusion (2)

tp-5b07-26:~/tmp> ls

linked-list3.c linked-list3.h

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g linked-list3.c -o linked-list3

In file included from linked-list3.c:5:0:

linked-list3.h:2:8: error: redefinition of ‘struct node’

struct node {

^~~~

In file included from linked-list3.c:4:0:

linked-list3.h:1:16: note: originally defined here

typedef struct node node_t;

^~~~

Including the header twice leads to duplicate declarations and compiler errors.

238/265 2023 INF107 Part 2 - The C Language

Protecting Headers

To avoid this problem:

Add the following pattern at the beginning of the header file:
'#ifndef' <Header-identifier>

'#define' <Header-identifier>

Close the #ifndef at the end of the header:
'#endif' // <Header-identifier>

Reasoning:
• Chose a unique header identifier.

(usually by “mangling” the file name into a valid identifier, e.g., stdio.h → _STDIO_H)
• On first inclusion:

– The unique identifier was never defined.
– The #ifndef will include the header’s code …
– … notably, the #define of the unique identifier.

• In case of a redundant inclusion:
– The unique identifier was defined by the first inclusion.
– The #ifndef of subsequent inclusions will skip the header’s code.

239/265 2023 INF107 Part 2 - The C Language

Example: Safe Redundant Header Inclusion (1)

#ifndef LINKED_LIST4_H

#define LINKED_LIST4_H

typedef struct node node_t;

struct node {

void *data;

node_t *next;

};

#endif // LINKED_LIST4_H

Content of linked-list4.h.

#include <stdio.h>

#include <stdlib.h>

#include "linked-list4.h" // Including the same header ...

#include "linked-list4.h" // twice, is no longer an issue.

int main(int argc, char *argv[]) {

static int data[] = {4, 067, 0xfffffff9};

node_t node2 = {&data[2], NULL};

node_t node1 = {(void*)&data[1], &node2};

node_t node0 = {&data[0], &node1};

for(node_t *tmp = &node0; tmp; tmp = tmp->next) {

int *ptr = (int*)tmp->data;

printf("%d\n", *ptr);

}

return EXIT_SUCCESS;

}

Content of linked-list4.c.

240/265 2023 INF107 Part 2 - The C Language

Example: Safe Redundant Header Inclusion (2)

tp-5b07-26:~/tmp> ls

linked-list4.c linked-list4.h

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g linked-list4.c -o linked-list4

tp-5b07-26:~/tmp> ls

linked-list4 linked-list4.c linked-list4.h

tp-5b07-26:~/tmp> ./linked-list4

4

55

-7

241/265 2023 INF107 Part 2 - The C Language

Compiling Multiple C Source Files

The gcc compiler accepts multiple C source files:

Only a single main function is allowed.

First each C source file is compiled separately:

• Pretty much as if compiled manually.
• For each C file an object file is produced.

– Similar to an executable file.
– Only contains code/data of current translation unit.

Then all object files are linked together:

• Take code/data of each object file.
• Chain code/data together.
• Result: the final executable file.

242/265 2023 INF107 Part 2 - The C Language

Example: Multiple Source Files (1)

#ifndef LINKED_LIST5_H

#define LINKED_LIST5_H

typedef struct node node_t;

struct node {

void *data;

node_t *next;

};

#define emptyList NULL

extern node_t *pushFront(node_t *list, void *data);

extern void freeList(node_t *list);

#endif // LINKED_LIST5_H

Content of linked-list5.h.

243/265 2023 INF107 Part 2 - The C Language

Example: Multiple Source Files (2)

#include "linked-list5.h" // Should always go first.

#include <stdlib.h>

node_t *pushFront(node_t *list, void *data) {

node_t *new = malloc(sizeof(node_t));

if (new) {

new->data = data;

new->next = list;

return new;

}

else return NULL;

}

void freeList(node_t *list) {

while(list) {

node_t *tmp = list;

list = list->next;

free(tmp);

}

}

Content of liblinked-list5.c.

#include <stdio.h>

#include <stdlib.h>

#include "linked-list5.h"

int main(int argc, char *argv[]) {

static int data[] = {4, 067, 0xfffffff9};

node_t *node2 = pushFront(emptyList, &data[2]);

node_t *node1 = pushFront(node2, &data[1]);

node_t *node0 = pushFront(node1, &data[0]);

for(node_t *tmp = node0; tmp; tmp = tmp->next) {

int *ptr = (int*)tmp->data;

printf("%d\n", *ptr);

}

freeList(node0);

return EXIT_SUCCESS;

}

Content of linked-list5.c.

244/265 2023 INF107 Part 2 - The C Language

Example: Multiple Source Files (3)

Using the -save-temps option the gcc compiler keeps all intermediate files:7

tp-5b07-26:~/tmp> ls

liblinked-list5.c linked-list5.c linked-list5.h

tp-5b07-26:~/tmp> gcc -save-temps -Wall -pedantic -std=c11 -O0 -g \

liblinked-list5.c linked-list5.c -o linked-list5

tp-5b07-26:~/tmp> ls

liblinked-list5.c liblinked-list5.o linked-list5 linked-list5.h linked-list5.o

liblinked-list5.i liblinked-list5.s linked-list5.c linked-list5.i linked-list5.s

tp-5b07-26:~/tmp> ./linked-list5

4

55

-7

7Usually not needed in real toolchains. Used here for demonstration purposes only.
245/265 2023 INF107 Part 2 - The C Language

Compilation Steps of gcc

The gcc compiler produces several intermediate files:

Per C source file:
• Preprocessor: (.c files ⇒ .i files)

C source file after preprocessing.
• C Compiler: (.i ⇒ .s)

Assembly code after compilation.
• Assembler: (.s ⇒ .o)

Object file containing machine code.

Linker:
Takes all .o files and links them together — producing the executable file.

246/265 2023 INF107 Part 2 - The C Language

Stopping after Compilation Steps

One can stop gcc after each compilation step using command-line options:

Per C source file:

• Preprocessor: -E

Stop gcc after the preprocessor (.c ⇒ .i).

• C Compiler: -S

Stop after the C compiler (.c ⇒ .s).

• Assembler: -c

Stop after the assembler (.c ⇒ .o).

Any of the above options disables the linker.

No need to specify the name of the output (-o option not needed).

247/265 2023 INF107 Part 2 - The C Language

Example: Manually Compiling and Linking

Object files can be produced explicitly by gcc using the -c option:
tp-5b07-26:~/tmp> ls

liblinked-list5.c linked-list5.c linked-list5.h

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g liblinked-list5.c -c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g linked-list5.c -c

tp-5b07-26:~/tmp> ls

liblinked-list5.c liblinked-list5.o linked-list5.c linked-list5.h linked-list5.o

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g liblinked-list5.o linked-list5.o -o linked-list5

tp-5b07-26:~/tmp> ls

liblinked-list5.c liblinked-list5.o linked-list5 linked-list5.c linked-list5.h linked-list5.o

tp-5b07-26:~/tmp> ./linked-list5

4

55

-7

248/265 2023 INF107 Part 2 - The C Language

Compilation in Big Projects

Nobody compiles big projects manually using gcc directly:

Instead build tool are used:
• Allow to specify which output files to produce.
• Allow to specify on which input files each output file depends.
• Computes automatically which files to compile and how.

– Compile only code that has changed.
– Compile code in parallel.

• Examples:
– make (old) or cmake (modern).
– Build systems of IDEs (Visual Studio/Code, …).

Often use libraries:
• Allow to structure code.
• Allow to reuse common code.

(e.g., graphical interfaces, data structures, …)

249/265 2023 INF107 Part 2 - The C Language

Libraries: Revisiting the Standard C Library

How does the compiler find header files?
• Usually stored in an implementation-defined directory.
• Lab machines: /usr/include/.

Where is the machine code (e.g., of printf)?
• Stored in implementation-specific library files.
• Lab machines offer two options:

– Static linking: /lib/x86_64-linux-gnu/libc.a
– Dynamic linking: /lib/x86_64-linux-gnu/libc.so.6

gcc searches these files automatically.

250/265 2023 INF107 Part 2 - The C Language

Library Files

Static libraries are called archives:
• Archive files have the suffix .a.
• A collection of object files with a symbol index:

– All variables/functions appear in the index.
Dynamic libraries:

• More like an executable file (without main though).
• Contain all data/code of the library.
• Loaded at the same time as the executable file.
• Revisited in more detail in Part 3.

Library file names:
• Library file names always start with the prefix 'lib'.

251/265 2023 INF107 Part 2 - The C Language

Example: Symbols of libc.a

tp-5b07-26:~/tmp> nm /lib/x86_64-linux-gnu/libc.a

<snip>

fprintf.o:

<snip>

U __vfprintf_internal

0000000000000000 T fprintf

printf.o:

<snip>

U __vfprintf_internal

0000000000000000 T printf

U stdout

<snip>

stdio.o:

0000000000000000 D stderr

0000000000000010 D stdin

0000000000000008 D stdout

<snip>

252/265 2023 INF107 Part 2 - The C Language

Creating a Static Library Archive

Create a (or several) .h header file(s):
• Define the interface to the library.
• Include types, variable and function declarations (extern).

Create multiple C source files:
• Regroup function definitions and variable declarations (without extern).
• Use static keyword to hide variables/functions when needed.

Compile C source files:
• Producing object files (-c option).
• Build the archive using the following command pattern:

'ar' 'r' <Library-name> <Object-files>

253/265 2023 INF107 Part 2 - The C Language

Example: Static Library Archive (1)

#ifndef LINKED_LIST6_H

#define LINKED_LIST6_H

typedef struct node node_t;

struct node {

void *data;

node_t *next;

};

#define emptyList NULL

extern node_t *pushFront(node_t *list, void *data);

extern void freeList(node_t *list);

#endif // LINKED_LIST6_H

Content of linked-list6.h.

254/265 2023 INF107 Part 2 - The C Language

Example: Static Library Archive (2)

#include "linked-list6.h" // Should always go first.

#include <stdlib.h>

node_t *pushFront(node_t *list, void *data) {

node_t *new = malloc(sizeof(node_t));

if (new) {

new->data = data;

new->next = list;

return new;

}

else return NULL;

}

Content of pushfront.c.

#include "linked-list6.h" // Should always go first.

#include <stdlib.h>

void freeList(node_t *list) {

while(list) {

node_t *tmp = list;

list = list->next;

free(tmp);

}

}

Content of freelist.c.

255/265 2023 INF107 Part 2 - The C Language

Example: Static Library Archive (3)

tp-5b07-26:~/tmp> ls

freelist.c linked-list6.h pushfront.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g -c pushfront.c freelist.c

tp-5b07-26:~/tmp> ls

freelist.c freelist.o linked-list6.h pushfront.c pushfront.o

tp-5b07-26:~/tmp> ar r liblinked-list6.a pushfront.o freelist.o

ar: creating liblinked-list6.a

tp-5b07-26:~/tmp> nm liblinked-list6.a

pushfront.o:

U malloc

0000000000000000 T pushFront

freelist.o:

U free

0000000000000000 T freeList

256/265 2023 INF107 Part 2 - The C Language

Using (external) Libraries

The gcc compiler needs to find the library/header files:

Include path:
Directories where the compiler searches for header files.

• #include <>:
Searches only in standard include directories.

• #include "":
Searches first in the directory of the currently compiled C source file, then in standard directories.

• You can specify additional directories using the option -I:
'gcc' <options> ('-I' <Include-directory>)* <Source-files>

Library path:
Directories where the compiler searches for library files.

• gcc by default searches standard library directories.
• You can specify additional directories using the option -L:
'gcc' <options> ('-L' <Library-directory>)* <Source-files>

257/265 2023 INF107 Part 2 - The C Language

Using (external) Libraries (2)

Telling gcc to link against a library:

Library file names:
• Recall: library file names always start with 'lib'.

To tell gcc to search a library use the -l option:
• Without the prefix 'lib', gcc adds it automatically.

'gcc' <options> <Source-files> ('-l' <Library-name>)*

258/265 2023 INF107 Part 2 - The C Language

Example: Using a Static Library Archive (1)

#include <stdio.h>

#include <stdlib.h>

#include "linked-list6.h"

int main(int argc, char *argv[]) {

static int data[] = {4, 067, 0xfffffff9};

node_t *node2 = pushFront(emptyList, &data[2]);

node_t *node1 = pushFront(node2, &data[1]);

node_t *node0 = pushFront(node1, &data[0]);

for(node_t *tmp = node0; tmp; tmp = tmp->next) {

int *ptr = (int*)tmp->data;

printf("%d\n", *ptr);

}

freeList(node0);

return EXIT_SUCCESS;

}

Content of linked-list6.c.

259/265 2023 INF107 Part 2 - The C Language

Example: Using a Static Library Archive (2)

tp-5b07-26:~/tmp> ls ./liblinked-list/

liblinked-list6.a linked-list6.h

tp-5b07-26:~/tmp> ls

linked-list6.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g -I./liblinked-list/ -L./liblinked-list/ \

-o linked-list6 linked-list6.c -llinked-list6

tp-5b07-26:~/tmp> ls

linked-list6 linked-list6.c

tp-5b07-26:~/tmp> ./linked-list6

4

55

-7

260/265 2023 INF107 Part 2 - The C Language

Check Yourself!

1. List the kind of files that may contain machine code/binary data.

2. Which option is needed to ask gcc to produce an object file?

3. Which compilation phase actually produces the object file?

4. Which option is needed to indicate to gcc that your program requires a library?

261/265 2023 INF107 Part 2 - The C Language

Answers (1)

1. In the lecture you have seen several kinds of files that may hold machine code:

Executable files
Object files

Library archives
Dynamic libraries

2. The gcc compiler produces object files when the -c option is provided. In this case the file name
of the produced object file is automatically derived from the name of the C source file.

262/265 2023 INF107 Part 2 - The C Language

Answers (2)

3. The compilation proceeds in multiple phases using the following tools:

a. The preprocessor.
b. The C compiler.

c. The assembler.
d. The linker.

The preprocessor applied text substitutions, and thus produces just C source code. The C
compiler translates the C source code to assembly language. The assembler translates the
assembly language to machine code – producing an object file. The linker combines all of
the program’s object files, along with additional library files, to produce the final executable
file.

The answer is thus: the assembler.
4. You can ask gcc to search for a library and link it to your program using the -l option. Recall, the

filename of the library always starts with the prefix 'lib', which is dropped for the -l option.

You may need in addition supply the -I and -L options, in order to make sure that gcc finds the
header files of the library as well as the library files (an archive or dynamic library).

263/265 2023 INF107 Part 2 - The C Language

Lab Exercises

Polish code from previous lab session:

Check memory operations with valgrind

Restructure code:

• Write header files.
• Split code into multiple C source files.
• Use sub-directories.

Regroup reusable code into a static library.

• Create a static library.
• Link against that library.

264/265 2023 INF107 Part 2 - The C Language

Credits

Warning icon created by Vectors Market - Flaticon

265/265 2023 INF107 Part 2 - The C Language

https://www.flaticon.com/free-icons/error

	Lecture 1
	Welcome
	Compilers - From source code to machine code
	The C Language
	Basic C Types
	Global Declarations and Definitions
	Expressions (Quick)
	Statements
	The Standard Library
	Lecture 2
	Expressions (Elaborated)
	Derived Types
	Lecture 3
	The Standard Library
	Managing Heap Memory
	File Input and Output
	Manipulating Addresses and Pointers
	Lecture 4
	The Preprocessor
	Finding and Avoiding Bugs
	Structuring a Code Base

