
Part 2.1 - The C Language
ECE_3TC31_TP/INF107

Florian Brandner
2024

Lecture 1

2/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Welcome

3/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Resources

Book:
EFFECTIVE C
An Introduction to Professional C
Programming
Robert C. Seacord
No Starch Press, 2020
ISBN-13: 978-1-71850-104-1
CPP Reference:
https://en.cppreference.com/w/c

R O B E R T C . S E A C O R D

A N I N T R O D U C T I O N T O

P R O F E S S I O N A L C P R O G R A M M I N G

E F F E C T I V E CE F F E C T I V E C

4/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c

Why C?

C has been among the most popular languages1 of the TIOBE index since 2001.
Widely available on most computer platforms/operating systems.
Simple and flexible.
Implementation basis for many other languages.
Good for teaching:

• Exposes the computer system to the programmer.
• Full control over the computer system.
• Allows to make many mistakes – (un-) fortunately.

1https://www.tiobe.com/tiobe-index/
5/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://www.tiobe.com/tiobe-index/

History and Milestones

1972: Invented by Dennis Ritchie and Ken Thompson at Bell Telephone Laboratories
Needed to develop their own operating system … Unix (see Part 3 of this course)

1989: First standard (ANSI C or C89)
Adopted by ISO in the next year (C90)

1999: New ISO standard (C99) - widely supported
Boolean type
Integer types widht standardized sizes

2011: New ISO standard (C11) - well supported today
Unicode support
Atomics and support for multi-threading

2017: New ISO standard (C17) - mostly corrections
202x: Upcoming ISO standard (C23) currently under development

6/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Standards

Define what the language is (and what not).

Standard ≠ Implementation

• Not everything in standards is always implemented.
• Some computer platforms/operating systems add extensions.
• Some features differ between computer platforms/operating systems.
• Some things are implementation-defined, unspecified, or even undefined.

We’ll use C11 for this course

• Modern, still widely supported.

7/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Compilers - From source code to machine code

8/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

From source code to machine code (1)

Instruction
Memory Decode

Register
File

Sign-Extend

Data
Memory

P
C

+

&

+

Shift

4

0

1

1

0

1

0

(a) ”Source code” of a program (b) Processor executing the program

Data, Constants, Variables

Instructions, Machine Code

The compiler translates the source code, placing machine code (instructions) and data into memory.

9/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

From source code to machine code (1)

Instruction
Memory Decode

Register
File

Sign-Extend

Data
Memory

P
C

+

&

+

Shift

4

0

1

1

0

1

0

(a) ”Source code” of a program (b) Processor executing the program

Data, Constants, Variables

Instructions, Machine Code

In Part 1 you finished with a Harvard Architecture, but …

10/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

From source code to machine code (2)

Instruction
Cache Decode

Register
File

Sign-Extend

Data
Cache

P
C

+

&

+

Shift

4

0

1

1

0

1

0

Memory

Bus

(a) ”Source code” of a program (b) Processor executing the program

Data, Constants, Variables

Instructions, Machine Code

… today we have a Von Neumann Architecture (code and data are stored in the same memory).

11/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Memory Organization

We have to agree on an organization of the processor’s memory:
A part of the memory is reserved for the operating system.
(code and data of the OS - see Part 3)
Another part for the machine code of the program.
The rest is for storing data of the program:

• Global data, accessible all the time.
• Stack data, accessible only temporarily.
• Heap data, explicitly managed by the programmer.

Operating
System

Machine
Code

Global
Data

Heap
Data

Stack Data

Address 0

A
dd

re
ss

es
in

cr
ea

se

12/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Compilers

A compiler translates high-level source code to low-level binary code:

Statements and expressions are translated to assembly or machine code.
• Each instruction is stored at a unique address.
• Related instructions are grouped together in close proximity (close addresses).
• Example: an addition (+) becomes an add for a RISC-V.

Data structures and variables are stored in memory.
• Using a binary representation (two’s-complement, BCD coding, …)
• Each data item has a unique address.
• Related data items are grouped together.

– Stack, heap, or global

The compiler respects the memory layout from before
(i.e., code and data are disjoint)

13/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

The C Language

14/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Keywords

break extern static auto _Atomic (C11)
case float struct goto _Complex (C99)
char for switch inline (C99) _Generic (C11)
const if typedef register _Imaginary (C99)
continue int union restrict (C99) _Noreturn (C11)
default long unsigned volatile _Thread_local (C11)
do return void _Alignas (C11)
double short while

else signed _Alignof (C11)2

enum sizeof _Bool (C99)3

_Static_assert (C11)

https://en.cppreference.com/w/c/keyword
2Typically used through an alias: alignof
3Typically used through an alias: bool

15/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/keyword

A first C program (1)

/* Include functionality from the

standard library */

#include <stdio.h>

#include <stdlib.h>

// Declare a global variable

const char message[] = "Hello World";

// Define a function

int main(int argc, char *argv[])

{

printf("%s\n", message);

return EXIT_SUCCESS;

}

Content of hello-world.c.

It contains comments.
(// line and /* ... */ multi-line comments)
It includes some parts of the standard library.
(stdio.h = Input/Output, stdlib.h = other stuff)
It declares a global variable message.

• The initial value of the variable is the string
"Hello World".

• Its type is const char*.
(we’ll get back to types in a minute)

It defines a function main

• The main function has a special meaning:
when executed, the program starts here.

• Which calls the printf function from the IO library.
• Returns zero (and thus ends the program).

16/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

A First C Program (2)

To run the program we have to compile it first, only then we can execute it:
tp-5b07-26:~/tmp> ls

hello-world.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g hello-world.c -o hello-world

tp-5b07-26:~/tmp> ls

hello-world hello-world.c

tp-5b07-26:~/tmp> ./hello-world

Hello World

17/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

What did the compiler do?

The compiler produced the file hello-world:

This is an executable file, i.e., a program.
It contains machine code.
(e.g., equivalent to the source code of main)
It contains binary data.
(e.g., the string "Hello World")
The compiler assigns the code and data to addresses in the memory.
In order to execute the program:

1. Load the code and data from the file into memory.
(to the addresses specified by the compiler)

2. Tell to processor to jump to the first instruction of the program.
3. The processor starts executing the program …

18/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Basic C Types

19/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

What is a Type?

Types are a common concept in programming languages:

A type specifies the set of values admissible at a certain point in a program
(e.g., as function arguments, values of a variable, operands to an operator, …)

Dynamic vs. static typing:

• Dynamic typing: (e.g., Python, JavaScript, …)
The type of values is determined and checked while the program is running.

• Static typing: (e.g., Java, C, C++, OCaml, Haskell, …)
The type of every value is known and checked at compile-time.

C is statically typed.

20/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Basic C Types

In C each variable needs a fixed type. Types are grouped into classes:

Void type:
A special type without values.
Boolean type:
For boolean data with only two values (true/false or 0/1).
Integer types:
For characters and integer numbers (signed or unsigned).
Floating-point types:
For floating-point numbers.

Note that the C standard does not specify the data format, but most implementations actually use a
binary representation.

https://en.cppreference.com/w/c/language/type

21/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/type

The Void Type

The C language defines a special type void:

Special type with no values.

Used to indicate that functions do not return a value.

Can be used to indicate that functions do not take any argument.

Can be used with pointers (covered later in the lecture).

22/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Boolean Type

Added only by C99, thus a rather cryptic name: _Bool

Examples:

_Bool done = false; Initializes the variable done to false.
_Bool isfalse = 0; Initializes the variable isFalse to false.
_Bool isTrue = 5; Initializes the variable isTrue to true.
_Bool isTrueToo = true; Initializes the variable isTrueToo to true.

Alias bool
An alias is defined in the library, but requires the following line in the code:
#include <stdbool.h>

https://en.cppreference.com/w/c/language/arithmetic_types#Boolean_type

23/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/arithmetic_types#Boolean_type

Recapture: Number Representation

Integer numbers:
Usually represented using a sequence of 𝑛 bits (0/1).

• Unsigned integers - Simple number representation with base 2:
∑𝑛−1

𝑖=0 𝑏𝑖𝑡𝑖 ⋅ 2𝑖

• Signed integers: - Uses the two’s-complement representation:
−(𝑏𝑖𝑡𝑛−1 ⋅ 2𝑛−1) + ∑𝑛−2

𝑖=0 𝑏𝑖𝑡𝑖 ⋅ 2𝑖

• Least significant bit: 𝑏𝑖𝑡𝑖 with 𝑖 = 0
• Most significant bit: 𝑏𝑖𝑡𝑖 with 𝑖 = 𝑛 − 1

Floating-point numbers:
Usually based on the IEEE 754 standard.4

4https://en.wikipedia.org/wiki/IEEE_754
24/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.wikipedia.org/wiki/IEEE_754

Integer Types

C defines several integer types:

Signed Unsigned Guaranteed Size5 In Lab

signed char unsigned char at least 8 bits 8 bits
short int unsigned short int at least 16 bits 16 bits
int unsigned int at least 16 bits 32 bits
long int unsigned long int at least 32 bits 64 bits
long long int unsigned long long int at least 64 bits 64 bits

The number format is not specified though, but usually is two’s complement for signed integers.

https://en.cppreference.com/w/c/language/arithmetic_types

5Minimal size guaranteed by C standard in bits.
25/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/arithmetic_types

Integer Types Aliases (1)

Integer types can be written in many variants:

Signed Type Aliases

short

short int signed short

signed short int

int
signed

signed int

long

long int signed long

signed long int

long long

long long int signed long long

signed long long int

26/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Integer Types Aliases (2)

Unsigned integer types have aliases too (but fewer):

Signed Type Aliases

unsigned short int unsigned short

unsigned int unsigned

unsigned long int unsigned long

unsigned long long int unsigned long long

27/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Examples: Integer Types and Literals

Essential notations you have to know:

unsigned char c = 225; Initializes the variable c to 225.
int i = 512; Initializes i to 512.
unsigned ui = 5u; Initializes ui to 5 (using unsigned literal suffix ‘u’).
signed hex = 0x10; Initializes hex to 16 (using base 16).

Other notations you might see:

short octal = 010; Initializes octal to 8 (using base 8).
long int li = 0x20000010l; Initializes li to 536 870 928 (l suffix and base 16).
long long lli = 0x2020000010ll; Initializes to 137 975 824 400 (ll suffix and base 16).

https://en.cppreference.com/w/c/language/integer_constant

28/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/integer_constant

Floating-Point Types and Literals

float Single-precision, usually 32 bit.
double Double-precision, usually 64 bit.
long double Extended-precision, usually 128 bit.

Examples:

float f = .5; Initializes the variable f to 0.5.
double d = 1.2e-3; Initializes d to 0.0012.
long double ld = 2.0e+308; Initializes ld to 2.0𝑒308.

https://en.cppreference.com/w/c/language/floating_constant

29/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/floating_constant

Character Types and Symbols

char Equivalent either to signed char or unsigned char, usually 8-bit ASCII value.
char16_t A Unicode character (in the UTF-16 encoding).
char32_t A Unicode character (UTF-32).

Examples:

char c = 'a'; Initializes the variable c to the symbol a (97 decimal).
char clf = '\n'; Initializes cf to the line feed symbol (see next slide).
char16_t c16 = u'β'; Initializes c16 to the symbol β (UTF-16 prefix, little beta).

https://en.cppreference.com/w/c/language/character_constant
https://en.wikipedia.org/wiki/ASCII

30/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/character_constant
https://en.wikipedia.org/wiki/ASCII

Character Escape Sequences

Escape
Sequence Description

ASCII
Code

Escape
Sequence Description

ASCII
Code

\f Form feed 12 \' Single quote 39
\n Line feed 10 \" Double quote 34
\r Carriage return 13 \? Question mark 63
\t Horizontal tab 9 \\ Backslash 92
\v Vertical tab 11 \a Audible bell 7
\b Backspace 8
\n n an octal number n \uh h 16-bit hex

number
h

\xh h a hex number h \Uh h 32-bit hex
number

h

https://en.cppreference.com/w/c/language/escape
https://en.wikipedia.org/wiki/List_of_Unicode_characters

31/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/escape
https://en.wikipedia.org/wiki/List_of_Unicode_characters

String Literals

A sequence of character symbols stored as an array is a string:

char hi[] = "Hello World\n"; Initializes variable hi to the given string.
char beta1[] = u8"Greek beta: β"; Initializes beta1, using UTF-8 encoding.
char16_t beta2[] = u"Beta: \u0387";Initializes beta2, using UTF-16 encoding.
char32_t german[] = U"German S: ẞ";Initializes german, using UTF-32 encoding.

https://en.cppreference.com/w/c/language/string_literal

32/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/string_literal

Global Declarations and Definitions

33/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Structure of a C Source File

A C source file consists of …

// Include code from the standard library

#include <stdio.h>

#include <stdlib.h>

int counter = 0;

void stepCounter();

int getCounter();

int main(int argc, char *argv[])

{

// some code here

}

}

⎫}}}
⎬}}}⎭

Include header files to import code from libraries
(we’ll get back to libraries in more detail later)

Global declarations of functions, variables, and custom
types, as well as function definitions.

We call such a C source file a translation unit.

34/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Global Declarations

Introduce a new identifier in the C program:

An identifier is a name with a specific meaning in the program
• Identifiers are sequences of character symbols (letters, underscore, digits, …).
• Identifiers cannot start with a digit.
• Identifiers are case sensitive.

Specifies what the identifier means:
• It may refer to a variable, function, or type.
• It may be associated with additional properties.

https://en.cppreference.com/w/c/language/identifier

35/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/identifier

Global Declarations

Global declarations consist of three parts:
[Storage class and Qualifiers] <Type> <Declarators> ';'

Storage class and qualifiers are optional and may appear in any order:

• Storage class: For this class: static or extern.
• Qualifier: For this class: const.

Type:
Any of the basic types, covered so far, or a custom type (yet to come).

Declarators:
One or more declarators separated by a comma (,), such as:

• Identifier of a variable, optionally followed by an initializer.
• Identifier of an array with a size in brackets ([]), optionally followed by an initializer.
• identifier of a function with a parameter list in braces (()).

https://en.cppreference.com/w/c/language/declarations

36/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/declarations

Examples: Global Variable Declarations

int counter = 0; Declare the variable counter (with initializer).
const short constant = 27; Declare constant as const, i.e., its value

is not supposed to change during execution.
extern unsigned elsewhere; Declare elsewhere with storage class extern.
static char private = 'p'; Declare private with storage class static.
short data[100]; Declare data as an array of 100 short values,

stored consecutively in memory.
int init[3] = {0, 1, 2}; Declare init as an array of 3 int values

(initialized to 0, 1, and 2 respectively.)
char msg[] = "Hello World"; Declare msg as an array of characters (size derived).

37/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Examples: Global Function Declarations

void foo(); Declare the function foo, which does not
return anything and takes no argument.

int bar(char a, short b); Declare bar, taking two arguments
and returning an int value.

extern char elsewhere(int, int b);Declare elsewhere with storage class
extern, and two arguments (one without name).

static void priv(int a, int b); Declare priv with storage class static,
does not return anything, takes two arguments.

38/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Storage Duration and Linkage

Storage Duration:
Global identifiers are accessible during the entire execution of the program.

Linkage:
Indicates the visibility of the function/variable.

• Internal linkage:
The function/variable is visible only within the current translation unit.

• External linkage:
The function/variable is visible also from other translation units (AKA other C source files).

https://en.cppreference.com/w/c/language/storage_duration

39/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/storage_duration

Storage Classes

By default global function/variables have external linkage.
Impact of specifying the storage class for a declaration:

• Using static:
Changes linkage to be internal.

• Using extern:
Linkage becomes external + the compiler simply assumes that the function/variable exists.

– The compiler does not reserve memory space for the code/data of the functions/variable.
– The compiler does not assign a memory address in the current translation unit.
– Variables have to be redeclared without extern in another translation unit.
– Functions have to be defined without extern in another translation unit.

40/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Defining Functions

Function definitions (≠ declarations) consists of four parts:
[Storage class and Qualifier] <Type> <Declarator> '{' <Body> '}'

Resembles a function declaration:
Storage class, Qualifiers, Type, Declarator:
Same as for function declarations.
Body: (← was missing in declarations)
The code of the function enclosed in curly braces.

Example (our previous main function):
int main(int argc, char *argv[])

{

printf("%s\n", message);

return EXIT_SUCCESS;

}

https://en.cppreference.com/w/c/language/function_definition

41/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/function_definition

Function Body

The function body consists of a sequence of statements and/or declarations:

if or if -else statement.
switch statement.
while or do-while loop.
for loop.
return statement.
An expressions can also be a statement (e.g., 3 + 4;).
Compound statement:
Sequence of statements enclosed in curly braces ({ and }).

https://en.cppreference.com/w/c/language/functions
https://en.cppreference.com/w/c/language/statements

42/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/functions
https://en.cppreference.com/w/c/language/statements

Compound Statements and Scopes

Identifiers introduced by declarations are visible depending on their scope:

File scope:
The scope of the translation unit for global functions/variables.

Function scope:
Every function defines a new scope.

Block scope:
Every compound statement ({ and }) defines a new scope.

Scopes are nested:

• The function scope contains the file scope.
• A block scope contains its surrounding function or block scope.
• …

https://en.cppreference.com/w/c/language/scope

43/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/scope

Declarations within Functions

All kinds of declarations are allowed within functions:

The scope of these declarations is the currently open scope
(either the function scope or the last opened block scope)
Identifiers are only visible within the current scope or its nested scopes.
Identifiers in nested scopes may hide identifiers from surrounding scopes.

44/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Storage Duration and Linkage (revised)

Storage Duration:
Defines the lifetime during which a function/variable can be used:

• Static duration:
Identifiers are accessible during the entire execution of the program.

• Automatic duration:
Identifiers are accessible only when the enclosing scope is executed.

Linkage:
Indicates the visibility of the function/variable.

• No Linkage:
The variable is visible only in its enclosing scope.

• Internal Linkage:
The function/variable is visible only within the current translation unit.

• External Linkage:
The function/variable is visible also from other translation units (AKA other C source files).

https://en.cppreference.com/w/c/language/storage_duration

45/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/storage_duration

Storage Classes (revised)

By default global function/variables have external linkage and static storage duration.

By default local variables have no linkage and automatic storage duration.

Impact of specifying the storage class for a declaration:

• Using static:
– Changes linkage to be internal for global functions/variables.
– Changes storage duration to be static for local variables.

• Using extern:
Linkage becomes external + the compiler simply assumes that the function/variable exists.

– The compiler does not reserve memory space for the code/data of the functions/variable.
– The compiler does not assign a memory address in the current translation unit.
– Variables have to be redeclared without extern in another translation unit.
– Functions have to be defined without extern in another translation unit.

46/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Example: Declarations and Scopes

// File scope: message

const char message[] = "Hello World";

// File scope: message and main

int main(int argc, char *argv[])

{

// Function scope: argc, argv, and data

int data = 0;

{

// Block scope: message (hides message from file scope)

static const char message[] = "Me First";

printf("%s\n", message);

}

printf("%s\n", message);

return EXIT_SUCCESS;

}

47/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Check Yourself!

1
2 const char message[] = "Hello World";

3
4 int main(int argc, char *argv[])

5 {

6 int data = 0;

7 {

8 static const char message[] = "Me First";

9 printf("%s\n", message);

10 }

11 printf("%s\n", message);

12 return EXIT_SUCCESS;

13 }

1. What is the linkage/storage duration of the variable message on line 2?
2. What is the linkage/storage duration of the variable message on line 8?
3. What is the linkage/storage duration of the variable data on line 6?
4. What is the output of compiling this source code and running the resulting executable file?

48/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Answers

1. The first message variable is defined at file scope, with external linkage and static storage
duration.

2. The second message variable is defined at block scope, with no linkage and static storage
duration.

3. The data variable is defined at function scope. It has no linkage and automatic storage
duration.

4. The output of compiling and running the code is:

tp-5b07-26:~/tmp> ls

hello-world.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g hello-world.c -o hello-world

tp-5b07-26:~/tmp> ls

hello-world hello-world.c

tp-5b07-26:~/tmp> ./hello-world

Me First

Hello World

49/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Expressions (Quick)

50/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Expressions

Compute a single value from:

Constants
Same notations as seen before when we introduced types.

Variable values
Referred to by the variable’s identifier.

Operators
Respecting precedence and associativity.

Values returned by a function
The function is called (or invoked) and returns a value.

Example: 3 + 4 * a

https://en.cppreference.com/w/c/language/expressions
https://en.cppreference.com/w/c/language/operator_precedence

51/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/expressions
https://en.cppreference.com/w/c/language/operator_precedence

Operator Precedence and Associativity

Important to understand what an expression does and how to read it:

Associativity:
Defines how expressions are braced for operators with same precedence.

• Left Associative:
a - b + c + d is equal to ((a - b) + c) + d.

• Right Associative:
- ~ -a is equal to (- (~ (- a))).

Precedence:
Defines how expressions are braced for operators with different precedence.
-a + b * c is equal to (-a) + (b * c).

https://en.wikipedia.org/wiki/Operator_associativity

52/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.wikipedia.org/wiki/Operator_associativity

Operators and Precedence (1)

Precedence Operator Description Associativity

1
++ -- Postfix increment/decrement Left
[] Array subscripting Left
() Function call Left

2

++ -- Prefix increment/decrement Right

+ - Unary plus/minus Right
! Logical NOT Right
~ Bitwise NOT Right

3 * / %

Multiplication Left
Division Left
Remainder Left

4 + -
Addition Left
Subtraction Left

5 << >>
Bitwise shift left Left
Bitwise shift right Left

53/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Operators and Precedence (2)

Precedence Operator Description Associativity

6

< Less

Left
<= Less-equal
> Greater
>= Greate-equal

7 == !=
Compare for equality

Left
Compare not equal

8 & Bitwise AND Left
9 ^ Bitwise XOR Left
10 | Bitwise OR Left
11 && Logical AND (short-circuit) Left
12 || Logical OR (short-circuit) Left
13 ? : Conditional Operator Right
14 = Assignment Operator Right

54/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Operator Semantics

Semantics indicates what an operator does:

Most operators have obvious semantics …
• Unary minus (-a) negates a number.
• Binary plus (a + b) computes the sum of two numbers.
• Binary multiplication (a * b) computes the product of two numbers.
• …

We won’t explain each operator in detail, but you can consult the documentation:
https://en.cppreference.com/w/c/language/operator_arithmetic
https://en.cppreference.com/w/c/language/operator_logical
https://en.cppreference.com/w/c/language/operator_comparison
https://en.cppreference.com/w/c/language/operator_assignment

55/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/operator_arithmetic
https://en.cppreference.com/w/c/language/operator_logical
https://en.cppreference.com/w/c/language/operator_comparison
https://en.cppreference.com/w/c/language/operator_assignment

Check Yourself!

Rewrite the following expressions with the correct bracing:

1. a + b + c

2. !a * b + c

3. a + ++b + c

4. !a++ << ++b + c

56/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Answers

1. a + b + c is the same as (a + b) + c.
2. !a * b + c is the same as ((!a) * b) + c.
3. a + ++b + c corresponds to (a + (++b)) + c.
4. !a++ << ++b + c is equivalent to (!(a++)) << ((++b) + c).

57/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Statements

58/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Statements: if

Comes in two variants:
(1) 'if' '(' <Cond> ')' <Sub-statement-true>

(2) 'if' '(' <Cond> ')' <Sub-statement-true> 'else' <Sub-statement-false>

First evaluates the condition expression (<Cond>).
If result is non-zero the (first) sub-statement is executed (<Sub-statement-true>).
Otherwise:

• For the first variant:
Execute the statement following the if.

• For the second variant:
Execute the sub-statement (<Sub-statement-false>).

Example:

if (a + b < c) c = a + b;

else {

c = b / 2;

}

https://en.cppreference.com/w/c/language/if
59/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/if

Statements: switch (1)

A switch statement conditionally executes a case:
'switch' '(' <Cond> ')' '{' <Cases> '}'

Two possible formats for a case:
(1) 'case' <Const-expr> ':' <Sub-statement>

(2) 'default' ':' <Sub-statement>

Evaluates the condition (<Cond>).
Execution continues with the case whose value (<Const-expr>) matches the result.

• <Const-expr> has to be constant and is evaluated at compile-time.
• The values of the different cases have to be unique.

https://en.cppreference.com/w/c/language/switch
https://en.cppreference.com/w/c/language/constant_expression

60/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/switch
https://en.cppreference.com/w/c/language/constant_expression

Statements: switch (2)

If none of the case values matches:
• Execution continues with the default case, if present.
• Otherwise, execution continues with the statement following the switch.
• Only a single default case is allowed.

The cases are considered as a sequence of statements:
• When the execution of the selected case finishes, execution simply continues in the next case.
• One has to explicitly prevent this using a break statement.

https://en.cppreference.com/w/c/language/switch

61/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/switch

Example: switch

1 int counter = 0;

2 switch (cond) {

3 case 4: counter = counter + 1;

4 case 3: counter = counter + 1;

5 case 2: counter = counter + 1;

6 break;

7 case 1: break;

8 default: counter = 1000;

9 }

10 counter = counter * 2;

Execution depends on the value of cond (assume type int):

Value of cond Lines executed Final value of counter

1 1, 2, 7, 10 0
2 1, 2, 5-6, 10 2
3 1, 2, 4-6, 10 4
4 ??? ???
5 ??? ???

62/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Statements: while Loop

In a while loop the sub-statement is executed repeatedly as long as the condition evaluates to true:
'while' '(' <Cond> ')' <Sub-statement>

The condition expression (<Cond>) is evaluated.
• If the result is non-zero the sub-statement is executed.

– Subsequently the condition expression is reevaluated.
– And so on and so forth …

• If the result is zero the statement following the while is executed.
Example:

while (counter > 5)

{

counter = counter - 1;

}

https://en.cppreference.com/w/c/language/while

63/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/while

Statements: do Loop

A do loop is a similar loop construct:
'do' <Sub-statement> 'while' '(' <Cond> ')'

The sub-statement is executed first.
Then the condition expression (<Cond>) is evaluated.

• If the result is non-zero the sub-statement is executed again.
– Subsequently the condition expression is reevaluated.
– And so on and so forth.

• If the result is zero the following statement is executed.
Example:

do

{

counter = counter - 1;

} while (counter > 5)

https://en.cppreference.com/w/c/language/do

64/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/do

Statements: for Loop (1)

Finally, for loops are just special while loops:
'for' '(' <Init> ';' <Cond> ';' <Iteration> ')' <Sub-statement>

First evaluates the init expression (<Init>) once.
Then the condition expression (<Cond>) is evaluated.

• If the result is non-zero the sub-statement is executed.
– Next the iteration expression (<Iteration>) is evaluated.
– Subsequently the condition expression is reevaluated.
– And so on and so forth …

• If the result is zero the following statement is executed.

https://en.cppreference.com/w/c/language/for

65/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/for

Statements: for Loop (2)

This for loop:
'for' '(' <Init> ';' <Cond> ';' <Iteration> ')' <Sub-statement>

is hence analogous to the while loop:
<Init> ';'

'while' '(' <Cond> ')'

'{'

<Sub-statement>

<Iteration> ';'

'}'

66/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Statements: Jumping in Loops

One may exit a loop or skip to the next iteration using jump statements:

break:
• A break statement can also be used in loops (recall its use for the switch statement).
• It exits the loop, execution continues with the following statement after the loop.

continue:
• Skips the remaining statements in the loop.
• Execution continues with the evaluation of the condition in a while or do loop.
• Execution continues with the evaluation of the iteration expression in a for loop.

https://en.cppreference.com/w/c/language/break
https://en.cppreference.com/w/c/language/continue

67/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/break
https://en.cppreference.com/w/c/language/continue

Statements: return

In order to leave a function one can use the return statement:

If the return type of the function is void:
• It suffices to simply write return; without a return value.
• Execution continues after the call to the function.
• Reaching the end of such a function without an explicit return is equivalent to a return.

If the return type of the function is not void:
• A return value has to be supplied: return <Expression> ;.
• Execution continues after the call to the function.
• Reaching the end of such a function without an explicit return is undefined behavior (don’t do that).

https://en.cppreference.com/w/c/language/return

68/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/language/return

A First C Program: Division by Subtraction

#include <stdio.h>

#include <stdlib.h>

unsigned int division(unsigned int dividend, unsigned int divisor) {

unsigned int result = 0;

for (unsigned int rest = dividend; rest >= divisor; result++)

rest = rest - divisor;

return result;

}

const char message[] = "Hello World";

short data = 25;

int division_result;

int main(int argc, char *argv[]) {

division_result = division(data, 7) + 2;

printf("%s\n", message);

printf("%d\n", division_result);

return EXIT_SUCCESS;

}

Content of division.c.

69/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Let’s Run our Division Program

To run the program we have to compile it first and then execute it:
tp-5b07-26:~/tmp> ls

division.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g division.c -o division

tp-5b07-26:~/tmp> ls

division division.c

tp-5b07-26:~/tmp> ./division

Hello World

5

70/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

The main Function

Is the first function to be executed of a program.

Arguments:

• argc: (always type int)
The number of arguments provided to the program on the command line.

• argv:
Array of strings, one string for each command-line argument.

Return Value: (always type int)
Exit status of the program, EXIT_FAILURE/EXIT_SUCCESS on error/success.

Example: ./division one 2 on the command line results in
argc: 3
argv[0]: "./division"
argv[1]: "one"
argv[2]: "2"

71/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

The C Standard Library

72/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

The C Standard Library

The C standard library (AKA libc) provides elementary functions needed to write programs:

For instance:
• Math library.

https://en.cppreference.com/w/c/numeric
• Time and date library.

https://en.cppreference.com/w/c/chrono
• File, input, and output library.

https://en.cppreference.com/w/c/io
• Strings library.

https://en.cppreference.com/w/c/string
A complete list of library files:
https://en.cppreference.com/w/c/header

73/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/numeric
https://en.cppreference.com/w/c/chrono
https://en.cppreference.com/w/c/io
https://en.cppreference.com/w/c/string
https://en.cppreference.com/w/c/header

Using Library Functionality

A header file needs to be included to use library functions.

A header file is just a normal C file. By convention:

• It only contains global declarations.
• All variables are declared as external, i.e., always with extern.
• Functions are not defined only declared (with or without extern).

The compiler processes all declarations as if they were written in the C file.

The compiler automatically finds function definitions.

Example:
#include <stdio.h> - Include declarations of file, input, and output library.

74/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Example: Header File

Here is an excerpt from the libc header file math.h:
<snip>

extern double acos (double __x);

extern double asin (double __x);

extern double atan (double __x);

extern double atan2 (double __y, double __x);

<snip>

extern float fminf (float __x, float __y);

extern double fmin (double __x, double __y);

extern long double fminl (long double __x, long double __y);

<snip>

75/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

IO Library: Formatted Output (1)

The printf function allows to display formatted information:

Allows to print strings, characters, all basic types on the screen.
And much more …
Here is its declaration:
int printf(const char format[], ...);

• It takes a string as parameter (format).
• The dots (...) indicate that any number of additional parameters are accepted.

– Such functions are called variadic, we will not cover them in this course.6

• format specifies how to display the other parameter values.
Example: printf("A number: %d\n", 5)

https://en.cppreference.com/w/c/io/fprintf

6See https://en.cppreference.com/w/c/variadic to learn more about variadic functions.
76/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/io/fprintf
https://en.cppreference.com/w/c/variadic

IO Library: Formatted Output (2)

The format parameter is a special string:

Regular characters are simply displayed on the screen.

The % character has special meaning:

• It indicates that the value of another parameter should be displayed.
• The following characters indicate how the value should be displayed.

A quick summary for now (more elaborate explanation next time):

%c Displays a character symbol.
%d Displays a signed integer value (types _Bool, char, int, or short) as decimal.
%u Displays a unsigned integer value (unsigned _Bool, char, int, or short) as decimal.
%x Displays an integer value (signed or unsigned _Bool, char, int, or short) as hexadecimal.
%f Displays an floating-point number (float or double) as decimal.
%e Displays an floating-point number (float or double) in exponent notation.
%s Displays all the characters of a string.

https://en.cppreference.com/w/c/io/fprintf

77/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.cppreference.com/w/c/io/fprintf

Example: Formatted Output (1)
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char c1 = 'a', c2 = 97;

unsigned short s = 540;

int i = 0xfbfb;

float f = i * 1.133e5;

static const char string[] = "Some string\nwith a line break.";

printf("Character symbols: %c and %c are the same\n", c1, c2);

printf("Characters as numbers: %d and 0x%x are the same\n", c1, c2);

printf("Integer numbers (decimal) : %u and %d\n", s, i);

printf("Integer numbers (hex): 0x%x and 0x%X\n", s, i);

printf("Floating-point numbers: %f and %e\n", f, f);

printf("String: %s\n", string);

printf("Argument: %s\n", argv[0]);

return EXIT_SUCCESS;

}

Content of print.c.
78/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Example: Formatted Output (2)

tp-5b07-26:~/tmp> ls

print.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g print.c -o print

tp-5b07-26:~/tmp> ls

print print.c

tp-5b07-26:~/tmp> ./print

Character symbols: a and a are the same

Characters as numbers: 97 and 0x61 are the same

Integer numbers (decimal) : 540 and 64507

Integer numbers (hex): 0x21c and 0xFBFB

Floating-point numbers: 7308643328.000000 and 7.308643e+09

String: Some string

with a line break.

Argument: ./print

79/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Check Yourself!

1. What is the purpose of the break statement in a switch?
2. What is the difference between a while and do-while loop?
3. Where does the execution of a C program start?
4. What is the difference between a C header file and a regular C source file?

80/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Answers

1. The switch statement allows to distinguish different cases, depending on the value of its
condition expression. The cases within the switch are considered to be a sequence of
statements. So, execution may simply continue with the next case. Unless a break statement is
used. It exits the switch and continues execution at the statement following it.

2. When reaching (entering) a do-while loop the loop’s body is executed once before the loop
condition is verified. For while loops the loop condition is evaluated first, before potentially
executing the loop’s body.

3. Execution starts with the main function
(almost: some code of the standard library is executed earlier to initialize the memory, e.g., setting
up the stack and heap)

4. A header file only contains declarations with the extern keyword, e.g., it does not contain code of
functions. Regular C files contain at least one declaration without the extern keyword.

81/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

Lab Exercises

Get familiar with the C language and compiler:

Compile and run some existing code.
Use a debugger to inspect running code.

• Division
Write a couple of simple programs:

• Bit-level manipulation of integer values.
(extract sign-bit of a signed integer)

• Sieve of Eratosthenes7

(compute the primes up to 100, print integers on screen)
• Insertion sort

(sort floating-point numbers in an array, print floats on screen)

7https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
82/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Lab Exercises (2)

How to read/use the slides:

Use the slides as a reference:
• Lookup how to declare variables or functions.
• Lookup how to define functions.
• Lookup how to compile programs.
• Lookup further documentation using the embedded links.
• In the lab:

– Try things on your own.
– Try to find answers yourself in the slides (see above).
– Ask the teacher, if you cannot find the answer within a couple of minutes.

Use the slides to prepare for the exam:
• Go through the “Check Yourself” slides.
• Focus on concepts (types, scopes, linkage, precedence, …).
• Syntax is less important.

83/1 2024 ECE_3TC31_TP/INF107 Part 2.1 - The C Language

	Lecture 1
	Welcome
	Compilers - From source code to machine code
	The C Language
	Basic C Types
	Global Declarations and Definitions
	Expressions (Quick)
	Statements
	The C Standard Library

